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Abstract

Numerical models that combine weather forecasting and atmospheric chemistry are
here referred to as chemical weather forecasting models. Eighteen operational chem-
ical weather forecasting models on regional and continental scales in Europe are de-
scribed and compared in this article. Topics discussed in this article include how5

weather forecasting and atmospheric chemistry models are integrated into chemical
weather forecasting systems, how physical processes are incorporated into the mod-
els through parameterization schemes, how the model architecture affect the predicted
variables, and how air chemistry and aerosol processes are formulated. In addition,
we discuss sensitivity analysis and evaluation of the models, user operational require-10

ments, such as model availability and documentation, and output availability and dis-
semination. In this manner, this article allows for the evaluation of the relative strengths
and weaknesses of the various modelling systems and modelling approaches. Fi-
nally, this article highlights the most prominent gaps of knowledge for chemical weather
forecasting models and suggests potential priorities for future research directions, for15

the following selected focus areas: emission inventories, the integration of numerical
weather prediction and atmospheric chemical transport models, boundary conditions
and nesting of models, data assimilation of the various chemical species, improved un-
derstanding and parameterization of physical processes, better evaluation of models
against data and the construction of model ensembles.20

1 Introduction

Chemical weather is defined here as the short-term (less than two weeks) variability
of the atmospheric chemical composition. This definition is complementary to the tra-
ditional meteorological definition of weather, which is commonly characterized only by
physical variables (e.g., temperature, wind, mass, radiation, humidity). Methods that in-25

clude a combination of weather forecasting and atmospheric chemistry simulations are
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here referred to as chemical weather forecasting (CWF). CWF can therefore be seen
as a specific category of air-quality forecasting, where air-quality forecasting models
using numerical weather prediction (NWP) models are CWF models, but air-quality
forecasting models using statistical methods are not (Kukkonen et al., 2009c). Simi-
larly, for accuracy and consistency in replacing the traditional term air-quality forecast-5

ing and information system, we introduce a new term chemical weather forecasting
and information system (CWFIS) to represent the integrated system responsible for
the prediction and dissemination of chemical weather forecasts.

Sometimes the term biological weather forecasting is used to refer to forecasting of
biological constituents in the air, such as various pollen species and airborne allergens.10

This paper does not specifically address biological weather forecasting, although some
of the considered models include treatments for airborne pollen species.

Lawrence et al. (2005) have previously reviewed the then-current state of CWF and
emerging research challenges. Baklanov et al. (2008a, 2010) and Schluenzen and
Sokhi (2008) summarized existing mesoscale modeling systems and capabilities as15

an initial step to formulate recommendations for a unified integrated framework for
modeling systems, although they did not compare the mathematical architecture of
the various modeling systems. Baklanov (2010) also presented some gaps in our cur-
rent understanding and recommended directions of future research for integrated CWF
systems, although a valuable addition would be a more comprehensive set of recom-20

mendations summarizing the most urgent gaps of knowledge and research needs.
There are currently tens, possibly more than a hundred, of CWFIS’s on a local,

regional and continental scale in Europe and worldwide. Although abundant literature
exists on the properties of individual models, scientific articles presenting compilations
or synthesis of this information are scarce. Furthermore, the evaluation of models25

against data – defined here as the detailed analysis and evaluation of the mathematical
structure of such models or modelling systems in terms of the underlying physics and
chemistry – are more limited. No scientific evaluations have been presented of a larger
number of CWF models. Despite a plethora of modelling options, it is far from obvious,
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which are the optimal ones in most cases. Thus, a systematic review of these options
could substantially assist in evaluating the strengths and weaknesses of the various
methods, and thus contribute to the development of better and more robust modelling
methods in the future. Consequently, this present article aims to bring the field up to
date with the most comprehensive summary and assessment of the state of CWF.5

1.1 European-wide projects on chemical weather modeling

This study is part of the European Cooperation in Science and Technology (COST)
ES0602 action, which provides a forum for benchmarking approaches and practices in
data exchange and multi-model capabilities for CWF and near real-time (NRT) informa-
tion services in Europe (http://www.chemicalweather.eu). The action was initiated by10

the Network of European Meteorological services (EUMETNET, http://www.eumetnet.
eu) and the European Environment Agency (EEA). The content of this COST action,
its main objectives and organisation have been reviewed by Kukkonen et al. (2009a,b),
and the main results by Kukkonen et al. (2009c). The COST action includes partici-
pants from 20 countries, and its duration is from 2007 to 2011.15

The COST ES0602 action has constructed a European open-access CWF portal
(ECWFP) that includes access to a substantial number (more than 20) of available
chemical weather forecasting systems and their numerical forecasts; these cover in
total 31 areas in Europe (Balk et al., 2010; http://www.chemicalweather.eu/Domains).
This portal can be used to find out, which CWF services are available for a specific20

domain, for specific source categories or for specific pollutants. Such a single point
of reference for European CWF information has not previously been operational. The
Action has also investigated and reviewed existing chemical weather information sys-
tems and services (e.g., Karatzas and Kukkonen, 2009). This study has also been part
of the EU-funded projects MEGAPOLI, Megacities: Emissions, urban, regional and25

Global Atmospheric POLlution and climate effects, and Integrated tools for assess-
ment and mitigation (http://www.megapoli.info) and TRANSPHORM, Transport related
Air Pollution and Health impacts – Integrated Methodologies for Assessing Particulate
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Matter (http://www.transphorm.eu/).
There are several prominent ongoing European projects that address CWF. Some

of the most important operational CWF programs lie within the EU-ESA (European
Space Agency) programme GMES (Global Monitoring for Environment and Security,
http://www.gmes.info), viz. the GEMS (Global and regional Earth-system (Atmosphere)5

Monitoring using Satellite and in-situ data, http://gems.ecmwf.int) and PROMOTE
(PROtocol MOniToring for the GMES Service Element, http://www.gse-promote.org;
Poupkou et al., 2006) projects. The GMES Atmospheric Services focus on operational
monitoring and forecasting of atmospheric composition, dynamics and thermodynam-
ics through advanced exploitation of satellite and in-situ data, on a European, national10

and local level.
There are also other related EU-funded projects, such as CITYZEN (megaCITY –

Zoom for the Environment, https://wiki.met.no/cityzen), EUCAARI (The European Inte-
grated project on Aerosol Cloud Climate and Air Quality Interactions, http://www.atm.
helsinki.fi/eucaari) and EUSAAR (European Supersites for Atmospheric Aerosol Re-15

search, http://www.eusaar.net). Within the GEMS project, analyses and 72 h forecasts
have been presented using 12 state-of-the-art regional air-quality models on a quasi-
operational daily basis (http://gems.ecmwf.int). The models rely on the operational
meteorological forecasts of the European Centre for Medium-Range Weather Fore-
casts (ECMWF), as well as on GEMS global chemical weather data. They all consider20

the same high-resolution (5 km horizontal grid spacing) anthropogenic and biogenic
emissions inventories.

An example of a small-scale network of a few operational air-quality services has
been constructed within the first and second stages of the PROMOTE project. Al-
though GEMS and PROMOTE CWF services have constituted major advances in this25

field – and are evidently valuable for a range of stakeholders – a limitation is that these
projects have had a closed membership and have been fairly oriented around develop-
ment. There is a need to involve additional stake-holders in a more comprehensive way,
such as the national environmental agencies. This is also the task of the continuation
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projects of GEMS and PROMOTE, the MACC and PASODOBLE projects.
Another relevant program is Global Earth Observation and Monitoring (GEOmon,

www.geomon.eu), the goal of which is to build an integrated European ground-based
observational network of atmospheric composition to complement satellite observa-
tions. It lays the foundation for a European contribution to GEOSS (Global Earth5

Observation System of Systems, http://www.epa.gov/geoss) and optimizes the Euro-
pean strategy of monitoring atmospheric composition measurements (Tørseth and Vik,
2009).

1.2 Aims and scope of this study

Given the huge variety of existing modelling systems and options, we must limit the10

scope of this article. Specifically, we select 18 operational CWF models on regional
and continental scales (distance scales of approximately 10–6000 km) in Europe for
more detailed analysis. These models are among the most widely used in Western
European countries, as well as in Eastern and Central-Eastern European countries.
However, this collection of models is by no means exhaustive. Moreover, some of15

these models have been mainly developed elsewhere, especially in the United States.
This paper has three main aims. (i) The first aim is to gather information on the

selected operational CWF models in a systematic and harmonized format. (ii) The
second aim is to evaluate preliminarily and to provide information that makes it possible
for the readers to evaluate the relative strengths and limitations of the various models,20

and the components of the modeling systems. However, it is not the goal of this study to
rank the models, or advocate one model over another. (iii) The third aim is to highlight
the most prominent gaps of knowledge in CWF and to suggest priorities for future
research directions.

We do not address purely diagnostic models, which do not include forecasting ca-25

pabilities. The emergency preparedness models (such as those developed in case of
nuclear and chemical accidents) are also outside the scope of this study. Because this
article focuses on regional-scale models, we do not address modelling on global or
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urban scales. This study also addresses only operational CWF models. In comparison
with genuine research models, and versions of operational models that are used only
for research purposes, such operational models can include simplifications, such as
a reduced resolution, smaller domains, and less sophisticated physics and chemistry
modules. This article does not contain any new numerical intercomparisons of model5

predictions, or any novel evaluation of model predictions with data.

1.3 Organization of this article

This article is organized in the following manner. Section 2 introduces the 18 differ-
ent CWF models and overviews some of the relevant physical processes. Section 3
discusses the numerical weather prediction components of the models. Section 4 dis-10

cusses the processes in the atmospheric dispersion and chemistry modelling compo-
nents. Section 5 discusses the evaluation of the models. Section 6 discusses user
operations of the model, including availability, computer requirements, documentation,
user interfaces, sensitivity analyses, and dissemination. Section 7 looks forward to dis-
cuss emerging issues in the CWF community, including the identification of major gaps15

of knowledge and future research needs. Finally, Sect. 8 concludes this article.
The main characteristics of the selected 18 CWF models considered in this study

have been summarised and inter-compared in several tables. Overviews of the main
properties of the CWF and NWP models are first presented in Tables 1 and 2. The
atmospheric dispersion, chemistry and aerosol modelling, and deposition components20

are reviewed in Tables 3–7. The natural emissions, and the grid spacings and coor-
dinate systems are presented in Tables 8 and 9. The evaluation of each CWF model,
and the availability, user communities, documentation, and presentation of forecasts in
the internet are presented in Tables 10–12. Finally, in relation to future research needs,
adjoint (inverse) dispersion modelling is reviewed in Table 13.25
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2 Introduction to operational chemical weather models

This section addresses some key concepts and introduces the main physical and
chemical processes that are relevant for CWF. We have selected 18 operational, re-
gional and continental scale CWF modeling systems for a more detailed examination.
For readability, this section contains an introduction on the selected main properties5

of those models, before we present a more detailed analysis and inter-comparison of
model treatments for specific processes.

2.1 Criteria for the selection of the models and the use of information sources

A fairly large number of models were first suggested by the participants of the COST
ES0602 action for a more detailed examination; participants from more than 20 Euro-10

pean countries (listed in Kukkonen et al., 2009c) were encouraged to volunteer for this
activity. Finally, 18 models were selected for inclusion in this article.

The main criteria for the selection of the 18 models were (i) the prominence
and wide usage of the models, and (ii) the sufficient availability of scientific liter-
ature and Web-based documentation on the relevant model properties. Most of15

the models addressed in this study are also contained in the Model Documen-
tation System (MDS) of the European Environment Agency (EEA), accessible at
http://air-climate.eionet.europa.eu/databases/MDS/index html, and in the joint COST
728 and COST 732 Model Inventory (C728/732MI), accessible at http://www.cost728.
org (Schluenzen and Sokhi, 2008). We also aimed to present a balanced geographical20

representation across Europe.
To obtain the most credible and up-to-date information, model properties were de-

rived primarily from published literature and from the developers or users of each
model. We also used secondary information sources from the Web, such as the MDS,
C728/732MI and the various web pages of individual modelling systems. In some25

cases, we received conflicting information from these sources. When that has hap-
pened, we extracted the information from the published literature whenever available,
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and then contacted the model developers for confirmation.

2.2 The integration and coupling of NWP and CWF models

How NWP models couple with CWF models can be realized in one of two principal
ways. Grell et al. (2005) and Baklanov et al. (2008a) suggested the following defini-
tions.5

Off-line modelling systems (also called one-way interactive models) contain a sep-
arate chemical transport model (CTM) driven by meteorological input data from mete-
orological pre-processors, measurements or diagnostic models, is driven by analysed
or forecasted meteorological data from NWP archives or datasets, or reads output files
from operational NWP models or specific meteorological models at limited time inter-10

vals (e.g., 1, 3, 6 h).
On-line modelling systems (also called integrated or two-way interactive models) can

be on-line access models, when meteorological data are available at each time-step
(possibly via a model interface), or on-line integration of a CTM into a NWP model,
where two-way feedbacks may be considered. We will use this latter definition for on-15

line coupled modelling.
The on-line integration of NWP or other meteorological models, with atmo-

spheric aerosol and chemical transport models (CTM) allows all meteorological three-
dimensional (3-D) fields in CTM’s at each time step to be used. It also facilitates the
consideration of air-pollution feedbacks (e.g., those due to aerosols or greenhouse20

gases) on meteorological processes and climate forcing, and further on the chemical
composition. Within the 18 CWF models considered here, only two models (Enviro-
HIRLAM and WRF-Chem) are realised as on-line integrated models with two-way in-
teractions. Previously, Zhang (2008) has reviewed the history and current status of
the development and application of online-coupled meteorology and chemistry mod-25

els, with a focus on five representative models developed in the US including GATOR-
GCMOM, WRF/Chem, CAM3, MIRAGE, and Caltech unified GCM. An overview and
description of existing online coupled chemistry-meteorology models in Europe was
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done by Baklanov et al. (2010).
There are potential problems communicating between off-line coupled meteorolog-

ical and CWF models. The wide variety of existing modelling systems has lead to
a number of approaches and methods implemented in interface modules. Tasks per-
formed by interfaces are minimised in some coupled systems (as on-line models do not5

need interfaces per se); these rely on surface fluxes, and turbulence and dispersion pa-
rameters (such as eddy viscosity) that are provided by the meteorological drivers.

Other modelling systems use interface modules that implement surface and bound-
ary layer parameterisations to estimate dispersion parameters. In some cases inter-
faces are used to enhance the resolution of local physiographic data, and possibly10

introduce advanced parameterisations (e.g., those for urbanisation). Moreover, inter-
face modules can include the evaluation of emissions of species that can be strongly
influenced by meteorology, such as biogenic Volatile Organic Compound (VOC), wind-
blown dust, sea salt, and pollen.

2.3 Overview of the models15

The 18 models discussed in this article are now briefly introduced, presented in alpha-
betical order by their acronyms. A summary of selected main characteristics of these
models appear in Table 1. The European countries of the model users are listed in
the titles. In some cases, these countries may differ from the countries where these
models were originally developed.20

2.3.1 ALADIN-CAMx (Austria)

The air-quality model for Austria (AQA) consists of the meteorological model ALADIN-
Austria (Sect. 3.2.5) and the chemical dispersion model CAMx (Comprehensive Air
Quality Model with extensions; http://www.camx.com). The two models are coupled
offline. The modelling system ALADIN-CAMx was implemented for the first time in25

Baumann-Stanzer et al. (2005). The forecasts, which are done in cooperation with
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the University of Natural Resources and Applied Life Sciences in Vienna (BOKU), are
supported by the regional governments in Austria.

The SAPRC99 gas-phase photochemistry module (Carter, 2000) used in the oper-
ational AQA forecasts considers 76 different species and 217 reactions. The model
system generally uses European Monitoring and Evaluation Programme (EMEP; http:5

//www.emep.int) emissions for Europe. For the countries Austria, Czech Republic, Slo-
vakia and Hungary, the original 50 km×50 km data are downscaled to 5 km×5 km
based on an inventory from 1995. The EMEP data for 2005 (Vestreng et al., 2006) was
used during summer 2007. In addition, a new highly resolved emission inventory for the
City of Vienna (Orthofer et al., 2005) is used. Before 2008, terpene and isoprene emis-10

sions were calculated according to Guenther et al. (1993), and biogenic NO and NO2
emissions were calculated according to Williams et al. (1987) and Stohl et al. (1996).
For the operational air-quality forecasts in 2009, these methods were replaced by the
BEIS3 (Biogenic Emission Inventory System) mechanism, which is implemented in the
emission model SMOKE.15

Monthly average (1991–2001) concentrations of the different species are used as
boundary conditions for the coarse grid. The concentrations were obtained from
model calculations (Krüger et al., 2008), which were conducted for the EU-project
CECILIA (Central and Eastern Europe Climate Change Impact and Vulnerability As-
sessment, http://www.cecilia-eu.org). Forecasts of total column ozone are provided by20

the ECMWF IFS (Integrated Forecast System) model (Sect. 3.2.1).

2.3.2 CAMx-AMWFG (Greece)

The AM&WFG (Atmospheric Modeling and Weather Forecasting Group, National and
Kapodistrian University of Athens, Greece) developed the air-quality forecasting sys-
tem CAMx-AMWFG, which is based on the CAMx photochemical model. The sys-25

tem utilizes the SKIRON/Dust modeling system (Sect. 2.3.16) meteorological fields
in order to prepare long-range transport of gases and particulate matter for Europe
and the Mediterranean Region. The CAMx model was developed for regional-scale
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modeling of ozone and other pollutants (ENVIRON 1997, 2006). Products from this
model are 48 h operational forecasts of O3, NO2, SO2, and particulate sulfate (PSO4)
fields for the Mediterranean region and Europe every hour produced once per day
(http://forecast.uoa.gr/camxindx.php). Additionally CAMx-AMWFG can provide the
concentration and deposition for sodium and chloride (from sea-salt production), sul-5

fate produced on dust (DSO4), and nitrate produced on dust (DNO3).

2.3.3 EURAD-RIU (Germany)

The EURAD model (European Air Pollution and Dispersion model) is an air-quality
forecast model system for research and assessment. The model system was devel-
oped at the Rhenish Institute for Environmental Research (RIU) at the University of10

Cologne, Germany. The EURAD Air Quality Forecast System consists of three major
components: MM5 (Sect. 3.2.8) to predict the needed meteorological variables, the
EURAD Emission Module (EEM) to calculate the temporal and spatial distribution of
the emission rates of the major pollutants, and the EURAD Chemistry Transport Model
(EURAD-CTM) to predict the concentrations and deposition of the main atmospheric15

pollutants.
For the initial and boundary conditions, the NCEP GFS (National Centers for En-

vironmental Prediction Global Forecast System) is interpolated onto the grids of the
nested MM5 domains. The nesting enables consistent modelling from local to conti-
nental scales. Geographical information (e.g., orography, land-use type) is taken from20

the United Sates Geological Survey (USGS) database.
EURAD uses the RADM2 (Second generation Regional Acid Deposition Model) and

its successor RACM (Regional Atmospheric Chemistry Mechanism) for computing the
chemical processes and MADE (Modal Aerosol-Dynamics model for EURAD) for com-
puting aerosol processes. RADM2 contains 63 reactive species treated in 158 chem-25

ical reactions. There is an option to run the code with the more sophisticated RACM
chemistry as well. Detailed aqueous-phase chemistry is incorporated, as well. The
horizontal and vertical transport is done by the fourth-order Bott advection scheme.
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Vertical mixing of the species is treated by an implicit vertical diffusion scheme. The
sink at the lower boundary of the model is treated by wet and dry deposition parame-
terization. The major driver for wet deposition is the predicted precipitation. The dry
deposition is calculated via the deposition velocity for each species, which depends
upon the particle itself, the meteorological conditions and the land-use type.5

The daily output of meteorological and atmospheric constituents covers Europe,
Central Europe and the German States of North Rhine-Westfalia, Lower Saxony
and Bavaria. These products are published on the EURAD website (http://www.riu.
uni-koeln.de).

2.3.4 Enviro-HIRLAM (Denmark and others)10

Enviro-HIRLAM (Environment – HIgh Resolution Limited Area Model) is an on-
line coupled NWP and CTM model for research and forecasting of both me-
teorological and chemical weather. The modelling system was developed by
DMI (Danmaks Meteorologiske Institut) with other collaborators (Chenevez et al.,
2004; Baklanov et al., 2008b; Korsholm et al., 2008) and included by the15

European HIRLAM consortium as the baseline system in the HIRLAM Chemi-
cal Branch (http://hirlam.org/index.php?option=com content&view=category&id=108:
hirlam-chemistry-branch&layout=blog&Itemid=104&layout=default).

To make the model suitable for CWF in urban areas, the meteorological part is
improved by implementation of urban sublayer modules and parameterisations. The20

aerosol module in Enviro-HIRLAM has two parts: (i) a thermodynamic equilibrium
model (NWP-Chem-Liquid) and (ii) the aerosol dynamics model CAC (tropospheric
Chemistry Aerosol Cloud transport model). Parameterisations of aerosol feedback
mechanisms in the Enviro-HIRLAM model are described in Korsholm et al. (2008) and
Korsholm (2009).25

Users have the option to choose one of several chemical models: RADM2, RACM
or the newly developed economical NWP-Chem. Online Enviro-HIRLAM is used at
DMI for operational pollen forecasting. The DMI operational system also includes the
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off-line version (the so-called CAC system), which is used operationally for CWF (e.g.
in GEMS) and the Lagrangian model DERMA (Danish Emergency Response Model of
the Atmosphere; Sørensen et al., 2007) for emergency preparedness modelling.

2.3.5 FARM (Italy)

FARM (Flexible Air quality Regional Model) was originally derived from STEM-II (Sul-5

fur Transport and dEposition Model; Carmichael et al., 1998) and was later developed
as an independent project by ARIANET s.r.l. (http://www.aria-net.it). The model de-
velopment is presently supported by ENEA (Ente per le Nuove tecnologie, l’Energia
e l’Ambiente; www.enea.it) within the national project MINNI (Modello Integrato
Nazionale a supporto della Negoziazione Internazionale sui temi dell’inquinamento at-10

mosferico; www.minni.org) funded by the Italian Ministry of Environment. A short model
presentation is available at http://www.aria-net.it/front/ENG/codes/files/10.pdf, a more
detailed online description (in Italian) can be found at http://www.minni.org/sistema/
sistema-modellistico-atmosferico/modulo-chimico, and a comprehensive user’s guide
is provided on request. Recent applications are documented in Gariazzo et al. (2007),15

Silibello et al. (2008) and Calori et al. (2008).
The SAPRC-99 (Carter, 2000) and an updated version of the chemical mechanism

implemented in the EMEP Lagrangian Acid Deposition Model (Hov et al., 1988), includ-
ing the treatment of Persistent Organic Pollutants (POP’s) and mercury, and gas-phase
chemical mechanisms have been implemented into the model using KPP chemical20

pre-processor (KPP, Kinetic Pre-Processor: Damian et al., 2002; Sandu et al., 2003;
Daescu et al., 2003). The integration of the chemical reactions is performed by means
of the the following methods included in KPP: Rosenbrock (Sandu et al., 2003) and
LSODE (Radhakrishnan and Hindmarsh, 1993). Photolysis reaction rates appearing
in the mechanism can be estimated either using simple look-up tables or an on-line ver-25

sion of the Tropospheric Ultraviolet-Visible Model (TUV, Madronich, 1987). SAPRC99
is coupled with the CMAQ aero3 module to include aerosol processes. In presence
of a cloud layer a simplified aqueous phase mechanism is considered, to include the
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sulfate production in clouds.
FARM runs operationally at ARIANET coupled with the meteorological model RAMS

(Regional Atmospheric Model System; Cotton et al., 2003) to produce national-
scale air-quality forecasts (http://www.aria-net.eu/QualeAria). The model is run by
some Italian Regional Environmental Protection Agencies (ARPA) to produce air-5

quality analyses and forecasts. In particular, ARPA Lazio runs the model driven
by RAMS to produce urban air-quality forecasts for Rome (Finardi et al., 2009)
available at http://www.arpalazio.net/main/aria/sci/previsioni/roma/pm10.php; ARPA
Piemonte together with Novara and Torino Provinces use the model driven by
COSMO I7 (Italian implementation of the LM model, formerly known as LAMI,10

Limited Area Model Italy, http://www.arpa.emr.it/sim/?mappe numeriche) to forecast
air quality over Torino City (Finardi et al., 2008) and Novara Province (Pittini
et al., 2007), with results browsable at http://www.provincia.novara.it/arianova/WEB/
index.html; and ARPA Lombardia uses FARM and a meteorological analysis using
the ECMWF as a background field to compute near-real-time air-quality analyses15

(http://ita.arpalombardia.it/ITA/qaria/doc DistribSpazialeCalcolata.asp).

2.3.6 LOTOS-EUROS (The Netherlands)

Several models have been developed in The Netherlands. Netherlands Organisation
for Applied Scientific Research (TNO) developed LOTOS (Builtjes, 1992; Schaap et al.,
2004) and the National Institute for Public Health and the Environment (RIVM) devel-20

oped EUROS (de Leeuw and van Rheineck Leyssius, 1990; Matthijsen et al., 2002).
During 2004, the two models were unified, resulting in the LOTOS-EUROS model ver-
sion 1.0 (LOng Term Ozone Simulation – EURopean Operational Smog model, Schaap
et al., 2008; http://www.lotos-euros.nl). The model can be used to model the fate of
pollutants such as photo-oxidants, aerosols, heavy metals and persistent organic pol-25

lutants (POPs) over Europe.
The model is used operationally to forecast air pollution over Europe and the Nether-

lands driven by the meteorology from ECMWF IFS. The model is used to perform 72 h
6000
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European forecast (twice daily) at 30 and 15 km horizontal grid spacing and a smaller
domain over the Netherlands at a 15 km horizontal grid spacing, including data as-
similation of ozone measurements (van Loon et al., 2004). PM10 (Particulate Matter
<10 µm) forecasts are produced including a bias correction (Manders et al., 2009).

2.3.7 MATCH (Sweden)5

The Multi-scale Atmospheric Transport and Chemistry (MATCH) model is a three-
dimensional, Eulerian model developed at SMHI (Swedish Meteorological and Hydro-
logical Institute). It is used in a range of applications from urban-scale studies with grid
spacings on the order of a km or smaller (e.g., Gidhagen et al., 2005) to regional and
continental-scale studies on eutrophic deposition and photochemistry (e.g., Langner10

et al., 2005; Engardt et al., 2005; Andersson et al., 2007). MATCH is used for air-quality
assessment in Sweden and the Baltic Sea region and for forecasts of radioactivity in
case of nuclear emergencies in Europe (Langner et al., 1998).

MATCH includes modules describing emissions, advection, turbulent mixing and dry
and wet deposition. Depending on the application, specific modules describing chem-15

istry or aerosol dynamics can be added to the basic transport model. The MATCH
design has flexible horizontal and vertical resolution and allows for an arbitrary num-
ber of chemical compounds. The advection scheme (Bott, 1989) is fourth-order in
the horizontal and second-order in the vertical. A complete description of the trans-
port model can be found in Robertson et al. (1999) and in the on-line documen-20

tation (http://www.smhi.se/sgn0106/if/meteorologi/match.htm). Details on the photo-
chemistry version of MATCH can be found in Andersson et al. (2007) and van Loon
et al. (2007). Emissions used for the runs are based on EMEP2003.

The current MATCH operational system for CWF consists of two components, driven
by HIRLAM and ECMWF meteorology, respectively. The MATCH-HIRLAM component25

uses meteorological data provided by the HIRLAM NWP model that is operational at
SMHI. MATCH-HIRLAM is primarily targeted to ozone and is run once a day. A run
consists of a hindcast of the previous day and forecasts for the present day and
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the next day. The model grid comprises nearly all of Europe with a horizontal grid
spacing of 44 km (http://www.airviro.smhi.se/MAQS). MATCH-ECMWF is a part of the
GEMS/MACC regional cluster and uses ECMWF Integrated Forecast System (IFS) me-
teorology. It is currently operated with a horizontal grid spacing of 0.5◦ (0.2◦ in prepara-
tion) and provides 72 h forecasts of such quantities as O3, NO, NO2, CO, SO2, PM2.5,5

PM10, visibility and AOD (http://gems.ecmwf.int/; http://www.airviro.smhi.se/MAQS).

2.3.8 MM5-CAMx (Greece)

MM5-CAMx is the combination of the limited-area, non-hydrostatic, terrain following
and sigma-coordinate meteorological model MM5 (Sect. 3.2.8) coupled off-line with
the three-dimensional Eulerian photochemical dispersion model Comprehensive Air10

quality Model with extensions (CAMx). The forecast system performs a 72 h forecast
of daily mean and daily maximum O3, NO, NO2, CO, SO2, and PM10 concentrations
on three domains: two on the regional scale (Europe, Balkan Peninsula) and one on
an urban scale (Athens) (http://lap.phys.auth.gr/gems.asp).

2.3.9 MM5-CHIMERE (France and Portugal)15

MM5-CHIMERE consists of two models: The PSU/NCAR Mesoscale Model MM5
which is used to compute the meteorological variables that are needed to drive
the chemistry-transport model, and the MM5-CHIMERE model (http://www.lmd.
polytechnique.fr/chimere/), developed by IPSL (Laboratoire de Météorologie Dy-
namique), which is used to predict the concentrations and deposition of several tro-20

pospheric species. MM5-CHIMERE has been primarily designed to produce daily fore-
casts of ozone, aerosols and other pollutants and to make long-term simulations for
emission control scenarios. MM5-CHIMERE is executed over a range of spatial scales
from a global and regional scale (domains of several thousands of kilometers) to an ur-
ban scale (100–200 km) with horizontal grid spacings of 1–100 km. Products are daily25

72 h forecasts for O3, NO2, PM2.5, PM10 and desert dust (http://prevair.org).
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2.3.10 MM5/WRF-CMAQ (Spain, UK)

The CMAQ (United States Environmental Protection Agency, Community Multiscale Air
Quality) model includes a suite of chemical as well as transport and dynamic schemes
(Byun and Schere, 2006). It includes dynamical and chemical interactions between
atmospheric pollutants on multiple scales in a modular framework. CMAQ has been5

designed for assessing the impact of multiple pollutants including tropospheric O3 and
other oxidants, speciated PM, and acid-deposition species on time scales from an hour
to years.

CMAQ is a widely used chemistry transport model which has been linked to a num-
ber of meteorological models including MM5, Eta and WRF. Although WRF has super-10

seded MM5, the MM5-CMAQ is used for example to provide 72 h forecasts for hourly,
daily maxima and daily average information related to O3, NO2, CO, SO2, PM10, PM2.5
and NH3 (http://verde.lma.fi.upm.es/cmaq eu/).

Examples of CWF model forecasts can be found in Eder et al. (2006, 2009); they
examine the performance of the model for forecasting 8 h ozone concentrations over15

the USA. CMAQ is also used operationally in the UK to predict footprints of industrial
power plants for pollutants such as SO2 and PM10 (e.g., Yu et al., 2008). CMAQ is
supported and distributed by the Community Modeling and the Analysis System center
(CMAS, http://www.cmascenter.org/).

2.3.11 MOCAGE (France, Spain, Romania)20

The MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle, Model of Atmo-
spheric Composition at Large Scales) three-dimensional multi-scale CTM has been
designed at Météo-France for both research and operational applications. MOCAGE
is applicable to CWF, tracking and back-tracking of accidental point-source releases,
trans-boundary pollution assessment, assimilation of remote-sensing measurements25

of atmospheric composition, and studies on the impact of anthropogenic emissions of
pollutants on climate change, with more than 40 references in the international peer-
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reviewed literature (e.g., Dufour et al., 2004; Bousserez et al., 2007).
MOCAGE has the flexibility to be run in different configurations with different param-

eterizations depending upon its application. The model considers the troposphere and
stratosphere on the planetary scale and over limited-area sub-domains at higher hor-
izontal resolution. The model provides (by default) its own time-dependent chemical5

boundary conditions.
MOCAGE has been run daily since 2001. In 2004, Météo-France joined the partner-

ship consortium and operational platform “Prév’Air” (http://www.prevair.org; Rouil et al.,
2009) in charge of the pollution monitoring and forecasting for the French Ministry of
Environment. Within this platform, 72 h forecasts are delivered daily to Prév’Air users,10

including ozone, precursors and aerosol over the globe (horizontal grid spacing of 2◦),
Europe (0.5◦) and France (0.1◦).

MOCAGE is also run daily in the context of GMES atmosphere projects (GEMS
and now MACC, http://www.gmes-atmosphere.eu/services/raq), participating in the
pre-operational ensemble forecasting system. The configuration used in this con-15

text has two domains and covers the globe at 2◦ horizontal grid spacing and Eu-
rope (15◦ W–35◦ E and 35◦ N–70◦ N) at 0.2◦ grid spacing. MOCAGE is also run by
the Spanish and Romanian national meteorological services for their research and op-
erations. MOCAGE is coupled to the computational fluid dynamics software PALM
(http://www.cerfacs.fr/∼palm) and can assimilate using variational methods (3d-var, 3d-20

fgat or 4d-var) profiles, columns or surface measurements of key atmospheric pollu-
tants (see for instance: El Amraoui et al., 2010).

2.3.12 NAME (the UK)

NAME (Numerical Atmospheric dispersion Modelling Environment) is an off-line La-
grangian dispersion model developed by the Met Office (Jones et al., 2007). It provides25

a flexible modelling environment able to predict dispersion over distances ranging from
kilometres to the whole globe and for time periods from minutes upwards. This flex-
ibility allows the model to be used in a variety of applications, including emergency
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response (e.g., Webster et al., 2007) and routine air quality forecasting.
NAME uses meteorology from the Met Office Unified Model (MetUM), in either global

or limited area configuration. Chemical modelling within NAME employs the scheme
originally derived for the STOCHEM model (Collins et al., 1997). This scheme models
gaseous and aqueous phase chemistry and has 40 advected and 18 non-advected5

tracers, 140 reactions and 23 photolytic reactions; 16 species are emitted. The dry de-
position scheme used is based on a resistance network analogy for deposition velocity
modelling. Particles can also be removed from the model atmosphere by the following
processes; ((i) fall out due to gravity, ((ii) impaction with the surface, ((iii) washout by
falling precipitation, and iv) rainout, where the pollutant is absorbed directly into cloud10

droplets as they form.
Emissions are pre-processed using three datasets: (i) the UK National Atmospheric

Emission Inventory at 1 km resolution; (ii) a 5 km resolution inventory for shipping emis-
sions around the UK; (iii) the EMEP 50 km inventory outside the UK. The UK routine air
quality forecast configuration of NAME employs a nested configuration, with an outer15

domain covering Western Europe and an inner domain covering the UK. The effective
model grid for the inner domain corresponds to a resolution of around 8 km. The model
provides forecasts out to 5 days and routine output parameters include atmospheric
concentrations of ozone, CO, NO2, SO2, PM10 and secondary aerosol species.

2.3.13 OPANA (Spain and others)20

OPANA is an Operational version of ANA model (Atmospheric mesoscale Numerical
pollution model for urban and regional Areas). OPANA is designed to operate under
routine basis to forecast 5–7 days of air concentrations. OPANA produces daily air-
quality forecasts in Leicester City Council (UK), Madrid Municipality (Spain) and Las
Palmas de Gran Canaria (Spain). It is also used as an impact assessment system for25

industrial installations. Numerical products include daily 72 h forecasts for O3, NO2,
CO, SO2, and PM10 (http://artico.lma.fi.upm.es/).
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2.3.14 RCG (Germany)

The urban-scale photochemical model CALGRID (California Grid Model; Yamartino
et al., 1992) and the regional-scale model REM3 (Regional Eulerian Model; Stern,
1994) were used as the starting point for the urban/regional scale model, REM-
CALGRID (RCG, Stern, 2003). The RCG model has been designed to fulfill the re-5

quirements of the ambient air-quality framework directive 96/62/EC of the European
Commission (Stern et al., 2008). RCG is run in off-line mode. For long-term diagnos-
tic applications, the meteorological driver is prepared by the analysis system TRAM-
PER (Tropospheric Realtime Applied Meteorological Procedures for Environmental Re-
search).10

For operational forecasting, the meteorology derives from the GME model
(Sect. 3.2.2). The model is part of a model system development including statisti-
cal and fuzzy models (Reimer and Dlabka, 2000) and Eulerian model RCG (Flemming
and Reimer, 2000) to forecast especially surface ozone concentrations. The full sys-
tem is documented in Reimer et al. (2000). After transformation of GME data to RCG15

coordinates, the boundary layer parameters are determined anew by the TRAMPER
boundary layer module.

The forecast system was developed with respect to local abatement strategies for
German authorities in application of the so-called German ozone law in the 1990s. With
the introduction of EU directives, the diagnostic tests on emission scenarios became20

much more important than real-time forecasts. The RCG model has been operational
for more than 10 y, running every day at 12:00 UTC and producing a 72 h forecast over
Central Europe (http://www.trumf.de/).

2.3.15 SILAM (Finland, Estonia, Russia, Lithuania and Spain)

The SILAM modelling system (Air Quality and Emergency Modelling System) includes25

both Eulerian and Lagrangian dynamic kernels (e.g., Sofiev et al., 2006a,b; Saarikoski
et al., 2007; Siljamo et al., 2008; Sofiev et al., 2009; Saarnio et al., 2010; http://silam.
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fmi.fi). The model applications range from global to meso-beta scale (grid spacing
down to 1 km). The SILAM model is an open access system, and the source code
is publicly available on the web. The model is the official air-quality forecasting tool
on regional and larger scales in Finland and Lithuania. The model is also used for
research purposes in Estonia, Russia, Lithuania and Spain.5

The model has been used operationally in the EU-funded GEMS and
MACC (http://www.gmes-atmosphere.eu) and EU-funded PROMOTE (http://www.gse-
promote.org) and PASODOBLE projects. The predicted species include the concentra-
tions of O3, NOx, SOx, NHx, VOCs, sea salt, anthropogenic PM2.5 and PM10, as well as
pollution from wildland fires (e.g., Saarikoski et al., 2007; Sofiev et al., 2009; Saarnio10

et al., 2010) and for selected biogenic aerosols, such as allergenic pollen (e.g., Sofiev
et al., 2006b, 2011; Siljamo et al., 2008; Veriankaitë et al., 2010). The model is capa-
ble of four-dimensional variational data assimilation (Sofiev and Atlaskin, 2004). The
model has recently been applied to evaluate the dispersion of primary PM2.5 emissions
in the whole of Europe and in more detail in Finland, and the resulting adverse health15

impacts (Tainio et al., 2009, 2010; Karvosenoja et al., 2010).
The meteorological information is extracted most commonly from the FMI variant

of the weather forecasting model HIRLAM, which is used as a downscaling tool for
ECMWF Integrated Forecast System forecasts (which are also used without modifica-
tions), and from the regional AROME model simulations for Southern Finland and the20

Baltic States. The products are 54 and 72 h forecasts for Finland, the Baltic States,
and Europe (http://silam.fmi.fi).

2.3.16 SKIRON/Dust (Greece)

SKIRON/Dust is a modelling system that couples the National Oceanic and Atmo-
spheric Administration (NOAA) Eta NWP model (Sect. 3.2.6) off-line with a dust trans-25

port model. As of this writing, SKIRON’s NWP component runs at 5 km horizontal
grid spacing, using the nonhydrostatic version with the Betts–Miller–Janjic convective
parameterization scheme. Other modifications to the Eta model in SKIRON include
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a different radiative transfer scheme, differences in the soil properties in the surface
parameterization, more soil and vegetation categories, and the incorporation of sloped
surfaces in the surface energy balance.

The dust module of the system is based on the work of Nickovic et al. (2001). The
dust transport submodel includes eight size bins of dust particles (Marticorena and5

Bergametti, 1995; Zender et al., 2003; Pérez et al., 2006), the calculation of AOD and
the correction of radiative transfer through look-up tables (Kaufman et al., 2002). Dry
and wet deposition schemes have been improved, and the in-cloud scavenging has
been included (Kumar et al., 1995; Seinfeld and Pandis, 1998; http://forecast.uoa.gr/
dustindx.php).10

2.3.17 THOR (Denmark)

THOR is an integrated air-pollution forecast and scenario management system
(Frohn and Brandt, 2006; http://thor.dmu.dk), consisting of an off-line coupled three-
dimensional NWP model Eta (Sect. 3.2.6) and several air pollution models (e.g.,
Danish Eulerian Hemispheric Model DEHM, Urban Background Model UBM, point15

source model OML, Operational Street Pollution Model OSPM, accidental release
model Danish Rimpuff and Eulerian Accidental release Model DREAM). The model
covers most of the Northern Hemisphere with one two-way coupled nest over Eu-
rope. The system is capable of 72 h forecasts of weather and air pollution from re-
gional scale over urban background scale and down to individual street canyons in20

cities. DREAM can be used for any accidental release from power plants, indus-
trial sites, natural and human made fires, etc. (http://www2.dmu.dk/1 Viden/2 miljoe-
tilstand/3 luft/4 spredningsmodeller/5 Thor/default en.asp).

The system can be used for information and warning of the public in cases
of high air-pollution levels and for policy management (e.g., by emission reduc-25

tion or traffic scenarios) of many different chemical compounds. The THOR sys-
tem is executed up to four times every day. The products are 72 h forecast
and daily maximum of O3, NO, NO2, SO2, and SO4 for Denmark and Europe
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(http://www2.dmu.dk/1 Viden/2 Miljoe-tilstand/3 luft/4 udsigt/Default.asp).

2.3.18 WRF-Chem (Spain and others)

The Weather Research and Forecast (WRF; http://www.wrf-model.org/) model cou-
pled with Chemistry (WRF-Chem; Grell et al., 2005) provides the capability to simulate
chemistry and aerosols from cloud scales to regional scales. WRF-Chem was devel-5

oped by the NOAA with contributions from National Center for Atmospheric Research
(NCAR), Pacific Northwest National Laboratory (PNNL), EPA, and university scientists
(http://www.acd.ucar.edu/wrf-chem/).

WRF-Chem is an on-line model; it solves the chemistry every 10 min and the me-
teorological time step is 5 min. The EMIssion MOdel (EMIMO) (Compures Science10

School – Technical University of Madrid, UPM) provides emission data for every grid
cell, per hour and per primary pollutant, based on TNO European emissions. Prod-
ucts are daily 72 h O3, NO2, SO2, CO, PM10, PM2.5 and NH3 forecasts for Europe
(http://verde.lma.fi.upm.es/wrfchem eu/).

3 Numerical weather prediction models15

Nearly all operational air-quality models have two components, a numerical weather
prediction (NWP) component and an air-pollution chemistry and physics component.
The purpose of this section is twofold. First, we discuss the characteristics of NWP
models that affect the ability of the coupled model to produce accurate forecasts of air
quality. Second, we provide a brief overview of the different NWP models in opera-20

tional air-quality models in Europe. Tribbia and Anthes (1987) provide a review of the
scientific basis for numerical weather prediction, and Stensrud (2007) reviews physical
parameterization schemes.
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3.1 Characteristics of NWP models

In this section, the model architectures and physical processes in the NWP models are
discussed.

3.1.1 Formulation of NWP models

NWP models can be broken into hydrostatic and nonhydrostatic models. Hydrostatic5

models assume that the accelerations of vertical velocity are small relative to that of
gravity. Nonhydrostatic models, on the other hand, are capable of modeling vertical
accelerations exceeding that of gravity, such as are found in deep, moist convection.
Most models with horizontal grid spacings less than 10 km are run using nonhydrostatic
models.10

Another aspect is the vertical coordinate used in the formulation of the governing
equations. Some models use pressure as their vertical coordinate, whereas others use
a terrain-following sigma coordinate, where σ = (p−ps)÷ (p−pt), p is pressure, ps is
surface pressure, and pt is pressure at the top of the model (usually fixed at 100, 50, or
10 hPa). Others are hybrid systems that blend sigma coordinates near the surface and15

pressure coordinates aloft, obtaining the benefits of both coordinate systems (simpler
formulation of governing equations in pressure coordinates and better representation
of near-surface flows along sigma surfaces).

3.1.2 Cloud microphysical parameterizations

Accurate forecasting of the size and number concentrations of cloud and precipita-20

tion water particles is important for deposition, photochemistry and aerosol-cloud-
radiation interaction in CWF models. On the grid scale, cloud and precipitation
processes are handled by cloud microphysical parameterizations. When grid-cell-
sized regions of the model atmosphere become saturated, model clouds begin to
form. Because these processes act on scales smaller than the grid-scale, cloud25
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microphysical parameterizations handle the distributions and the conversions of con-
densed water substance between cloud water, rain water, cloud ice, snow, graupel,
and hail. Schemes range in sophistication from (i) those that neglect ice processes to
(ii) one-moment schemes (predicting only mixing ratios of each hydrometeor species)
and to (iii) two-moment schemes (predicting number concentrations and mixing ra-5

tios). Because of the relative lack of knowledge about microphysical processes, higher-
moment schemes and more sophisticated parameterizations do not necessarily lead
to better predictions of clouds and precipitation. Straka (2009) presents a recent review
of cloud microphysical parameterizations and principles.

3.1.3 Convective parameterization schemes10

The choice of convective parameterization scheme in the numerical weather prediction
model is important for two reasons. As Baldwin et al. (2002) lament, “All convective pa-
rameterizations contain arbitrary parameter settings and have characteristic behaviors
that are sometimes inconsistent with reality.” First, the morphology and evolution of the
convective systems that form in the model may depend on the convective scheme. For15

example, Bukovsky et al. (2006) showed that curved convective lines often formed in an
operational model with a modified Betts–Miller scheme, but did not initiate in the right
place and time, whereas convective systems formed with the Kain–Fritsch scheme did
not form bowing segments as frequently, but did initiate in the right place and time.

Second, how the convective parameterization changes the model atmosphere may20

not resemble what happens in reality. For example, Baldwin et al. (2002) showed that
a modified version of the Betts–Miller scheme does not produce observed cold pools in
the wake of convective systems and may eliminate convective inhibition more quickly
than in reality.

Models with horizontal grid spacings less than 5 km are often considered to be25

convection-permitting models, meaning that convective parameterizations can be omit-
ted (at least partly for large-scale convection storms), allowing convective instabil-
ities to be handled on the grid scale. In these models, the cloud microphysical
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parameterizations must do all the work of relieving instability. Another limitation of
convective parameterization schemes is that only heat and moisture are redistributed.
Momentum is generally not, partially because methods to handle such redistribution
have not been developed.

A common assumption is that convective parameterization schemes exist to param-5

eterize convective precipitation. In fact, convective parameterization schemes exist to
relieve the model of gravitational or buoyant instability in the vertical. Any precipitation
created by the adjustment of the atmosphere back to stability because of the convec-
tive parameterization scheme (called convective precipitation or subgrid-scale precip-
itation) is merely a byproduct of the readjustment. Models usually have two schemes10

for releasing moist gravitational instability, one for deep convection such as thunder-
storms, and one for shallow convection such as the stratocumulus clouds that cap the
planetary boundary layer in the subtropics.

Many convective parameterization schemes are developed from research on trop-
ical convection. Most of these schemes release the conditional instability almost as15

quickly as it is formed, maintaining convective neutrality. These are called statistical-
equilibrium schemes, following the terminology in Emanuel (1994, Sects. 11.2
and 12.3) and Mapes (1997). Such schemes include the Kuo (1965, 1974), Arakawa–
Schubert (1974), Betts–Miller (1986), and Tiedke (1989) schemes.

Convection in the mid and high latitudes, however, often does not behave in this man-20

ner. Instability may build up over hours or days, kept from being released by a lower-
tropospheric stable layer or inversion called a cap or lid, measured by an energy barrier
called the convective inhibition. Convection is released by some mechanism to lift un-
stable parcels past the layer of convective inhibition to release the instability. Such
schemes are called activated or triggered schemes (Sects. 11.2 and 12.3 in Emanuel,25

1994; Mapes, 1997). Such schemes include the Kain–Fritsch (Kain and Fritsch, 1990,
1993; Kain 2004) scheme and its derivatives (e.g., Bechtold et al., 2001).
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3.1.4 Boundary layer parameterization schemes for NWP models

Similar to convective parameterizations that redistribute heat and moisture when the
atmosphere becomes unstable to moist processes, boundary-layer parameterizations
serve a similar purpose for the near-surface layer of air. Some way is needed for
models to distribute the heat, moisture, and momentum as the free atmosphere joins5

with the surface through the unresolved scales of turbulence present in the planetary
boundary layer. The stability of the planetary boundary layer affects how this redistribu-
tion occurs, so some schemes work better for stability stratified situations (i.e., surface
inversions), others work better for unstably stratified situations (i.e., convective bound-
ary layers), and yet others work better for neutrally stratified situations (i.e., well-mixed10

boundary layers).
Despite their sophistication, the schemes used in NWP models have limitations, and

these limitations can be critical for CWF applications. For example, CWF models may
need greater vertical resolution within the boundary layer or improved surface sub-
layer parameterizations, especially for urban-scale air-pollution modeling where low-15

level emissions within the surface layer are occurring (from traffic, for example). Mixing
height is a quantity needed for boundary layer parameterizations, and it may be quite
variable, especially over different land categories in urban areas or due to internal
boundary layers, blending heights, etc. Furthermore, in some situations, the mixing
height may even be poorly defined. Therefore the boundary layer parameterisations in20

NWP models used for CWF should be further improved, as discussed in the overview
in Baklanov and Grisogono (2007) and Sokhi et al. (2010).

3.1.5 Initial and lateral boundary conditions

Initial conditions come from the observations collected worldwide and transmitted
through the Global Telecommunications System. In addition, local sources of data25

such as Doppler radars, satellites, mesoscale observations, and buoys may also be
included. The process by which observations are ingested into the model, interpo-
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lated onto the model grid, and balanced to produce a dynamically consistent set of
initial conditions is called data assimilation. Some data assimilation systems are three-
dimensional variational assimilation approaches (3DVAR), whereas others also include
assimilating data in time (4DVAR). Some of the newest data-assimilation approaches
involve ensemble Kalman filtering, an approach that recognizes that the initial condi-5

tions are not (and can never be) perfectly known.
NWP models can cover a global domain or be limited-area models, with a regional

domain. Limited area models have to accommodate lateral boundary conditions from
some larger-scale (usually global) model. Because output from global models is infre-
quent (usually only stored every 3 or 6 h) and the limited-area models need input at their10

domain boundaries every model time step (usually tens of seconds), the data along the
lateral boundaries is usually interpolated linearly in time. For situations where the flow
may be changing or new features are moving into the limited-area domain through the
boundaries, large errors may be introduced (Nutter et al., 2004).

3.2 NWP models15

In this section, we discuss the different NWP models that commonly are used to provide
meteorological data to the operational air-quality models. The characteristics of each
model are summarized in Table 2.

3.2.1 ECMWF IFS

Widely regarded as the most accurate NWP model in the world, the European Cen-20

tre for Medium-Range Weather Forecasts (ECMWF) was developed from a European
COST action to provide global medium-range weather forecasts (Woods, 2006). At
the time of this writing (August 2010), the nonhydrostatic ECMWF model known as the
Integrated Forecast System (IFS) is T1279, an equivalent grid spacing of about 16 km,
with 91 vertical hybrid-coordinate levels. The model is run twice a day at 00:00 UTC25

and 12:00 UTC. The nonhydrostatic dynamical core comes from the ALADIN model
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(Sect. 3.2.5). The convective scheme is a modified Tiedke (1989) scheme (Nordeng
1994), testing for shallow, deep, and midlevel convection (e.g., above a frontal zone or
inversion). The surface scheme is Tiled ECMWF Scheme for Surface Exchanges over
Land (TESSEL) and has been revised to include surface hydrology and the choice of
a global soil texture (Balsamo et al., 2009). Access to the model and its output is pro-5

prietary for 18 European member states and 10 states with co-operation agreements.

3.2.2 GME

GME (global model) from German Weather Service (DWD) is a hydrostatic model and
is designed for the routine forecast of complex weather development on synoptic scales
(Majewski et al., 2002). The vertical domain is extended up to the stratosphere. For10

regional weather forecasts, the nonhydrostatic limited area models COSMO-EU and
COSMO-De (Consortium for Small Scale Modeling) are used with boundary conditions
from GME (www.dwd.de). The global model GME is defined on an icosahedral grid
with about 60 km resolution. Within the postprocessing all fields are transformed to the
latitude-longitude geographical grid.15

3.2.3 Unified model

The Unified Model (UM; Cullen, 1993) was developed by the UK Met Office and intro-
duced in 1990. The Unified Model can serve as a global model or a nonhydrostatic
limited-area model (Davies et al., 2005). The model vertical coordinate is height, and
the convective parameterization is based on Gregory and Rowntree (1990), and the20

boundary-layer scheme is described by Brown et al. (2008). The Unified Model is
a proprietary model and has limited access to those outside the UK Met Office.

3.2.4 HIRLAM

The High Resolution Limited Area Model (HIRLAM; Undén et al., 2002; http://hirlam.
org) derives from a consortium of European meteorological institutes (Denmark,25
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Estonia, Finland, Iceland, Ireland, Norway, The Netherlands, Spain, and Sweden, with
France as a research partner). HIRLAM is run at a variety of grid spacings from 50 km
to 1.5 km, depending on country, with the reference version being run at Finnish Meteo-
rological Institute (FMI). HIRLAM is a hydrostatic model, although a nonhydrostatic ver-
sion also exists. Three convective parameterization schemes are available: STRACO5

(Soft TRAnsition COnvection), which is a modified Kuo scheme that aims to produce
a smooth transition between convective clouds and large-scale condensation, Rasch
and Kristjánsson (1998), and Kain and Fritsch (1990, 1993). HIRLAM is available to
member states, but the access can be granted for other users by a special agreement.

3.2.5 ALADIN, ARPEGE, and AROME10

ALADIN (Aire Limitée Adaptation Dynamique INitialisation) is a limited-area version
of the French global model ARPEGE (Action de Recherche Petite Echelle Grande
Echelle, which was the basis for the ECMWF IFS), growing out of a French-led consor-
tium. ALADIN uses a modified version of the Bougeault (1985) convective scheme and
a terrain-following–pressure hybrid vertical coordinate. ALADIN and HIRLAM consortia15

joined together starting in 2004 to form the HARMONIE consortium (Hirlam Aladin Re-
search on Meso-scale Operational NWP in Euromed) in which a new model has been
developed (AROME, Applications of Research to Operations at MEsoscale; Seity et al.,
2010).

3.2.6 Eta20

The Eta model was the operational limited-area hydrostatic model from June 1993
to June 2006 in the United States. The model uses a unique step-coordinate verti-
cal coordinate called the eta (hence the name of the model), a modified version of
the sigma coordinate (Mesinger et al., 1988; Janjic, 1990, 1994). The Eta model
uses a version of the Betts-Miller convective scheme (Betts and Miller, 1986; Janic,25

1994; Baldwin et al., 2002). Research versions of the Eta included a sigma-coordinate
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version, a nonhydrostatic version, and a version with the Kain–Fritsch convective pa-
rameterization scheme (Baldwin et al., 2002; Kain et al., 2003). One problem with the
Eta model is that it fails to reproduce strong surface winds associated with downslope
windstorms, partially as a result of the way that the mountain waves are handled in the
eta coordinate system (Gallus, 2000; Gallus and Klemp, 2000).5

3.2.7 MEMO

MEMO (MEsoscale MOdel) is a nonhydrostatic mesoscale model for simulating wind
flow. MEMO was developed by the Aristotle University of Thessaloniki and the Univer-
sity of Karlsruhe. MEMO has been used to study the wind fields around urban areas
(e.g., Kunz and Moussiopoulos, 1995). The model uses a terrain-following coordi-10

nate and has two physical parameterizations of importance – radiative transfer (Mous-
siopoulos, 1987) and K -theory for the planetary boundary layer – but neglects moist
processes by assuming the atmosphere is unsaturated. MEMO is coupled with the
photochemical dispersion model MARS (Model for the Atmospheric Dispersion of Re-
active Species) to produce the European Zooming Model (EZM; Moussiopoulos, 1995).15

Because MEMO does not contain moist atmospheric processes, its applicability when
clouds and precipitation are present is limited.

3.2.8 MM5

The fifth-generation Pennsylvania State University/National Center for Atmospheric Re-
search Mesoscale Model (MM5) is a nonhydrostatic limited-area model that has been20

one of the most popular open-source mesoscale models in the world (Dudhia, 1993;
Grell et al., 1994; http://www.mmm.ucar.edu/mm5). MM5 is a terrain-following sigma-
coordinate model with a large degree of flexibility in choosing and nesting domains,
grid spacings, and model physics. For example, as of the writing of this article, users
of the MM5 can choose from six convective parameterizations, seven resolvable-scale25

cloud microphysics parameterizations, six planetary boundary layer parameterizations,
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seven surface parameterizations, and four atmospheric radiation schemes, although
many of these schemes are outdated, overly simple, or inappropriate for some weather
situations. As such, care is needed when configuring the model to ensure optimal
performance.

3.2.9 WRF5

The successor to the MM5 is the open-source Weather Research and Forecasting
model (WRF, pronounced worf, like the Star Trek character; Skamarock and Klemp,
2008; Wang et al., 2009). The goal of WRF is to produce a common architecture
for both research and operations to build upon (http://wrf-model.org). WRF has two
nonhydrostatic dynamic cores, the ARW (Advanced Research WRF), developed pri-10

marily by the National Center for Atmospheric Research, and the NMM (Nonhydro-
static Mesoscale Model; Janjic et al., 2001; Janjic, 2003), developed primarily by the
NOAA/National Centers for Environmental Prediction. The WRF-ARW uses a sigma
vertical coordinate in either a limited-area or global domain, whereas the WRF-NMM
uses a hybrid sigma–pressure vertical coordinate. One of the recent additions to WRF15

is the positive-definite advection scheme, which improves the conservation of advected
quantities and prevents negative quantities such as mixing ratio and chemical concen-
trations (Skamarock, 2006; Skamarock and Weisman, 2009).

4 Air chemistry models: architectures and physical processes

CWF models are also commonly called chemical transport models (CTM), as they20

simulate processes controlling the distribution of chemical species in space and time.
To calculate atmospheric concentrations of pollutant species, the modelling framework
needs to incorporate several key processes: (i) horizontal and vertical transport (i.e.,
advection, diffusion, convection), (ii) chemical transformation, (iii) temporal allocation
and distribution of emissions, and iv) deposition of the pollutants. Although there are25
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a large number of three-dimensional CWF models available, most of these are based
on similar frameworks for linking these four types of interactions, and they all solve the
continuity equations for mass conservation of the pollutants in the atmosphere.

Transport of pollutant species involves both advection and diffusion. Advection refers
to the movement of pollutant species by the mean wind fields, whereas diffusion in-5

volves sub-grid-scale turbulent mixing of pollutants. By definition, advection transports
the pollutants without a significant change in the concentration in the considered vol-
ume, whereas diffusion involves mixing and hence leads to lowering of pollutant con-
centrations. In an Eulerian frame of reference, the computational domain of a CWF
model consists of a matrix of contiguous grid cells forming a finite three-dimensional10

volume (also called a box). As this box is a subset of the entire atmospheric globe, lat-
eral boundary conditions define the advection into the modelling grid. It is typical to
assume that horizontal advection is dominant and that there is no exchange at the top
boundary of the domain. The following sections describe the main processes that are
included in CWF models.15

One of the key problems in atmospheric composition modelling is knowing the ac-
curacy and reliability of the numerical schemes applied. A less appreciated, but also
an important issue, is to ensure the compatibility between the schemes applied in dif-
ferent modules of the modelling system. Usually, the model construction follows the
process-wise split (e.g., Seinfield and Pandis, 2006), thus distinguishing the advection20

scheme, diffusion algorithm, chemical transformation module, dry, and wet deposition,
data assimilation control module, and a set of supplementary modules including mete-
orological pre-processor. Of these, advection and diffusion are usually closely linked.

The main physical and chemical components of the selected 18 models have been
summarized in Table 3.25

4.1 Advection and convection

Existing advection schemes can be categorized by one of four approaches: finite-
difference, flux, semi-Lagrangian, and spectral. The basic principles of these schemes
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were formulated several decades ago and, with certain modifications, are still applied.
The finite-difference schemes involve direct discretization of the dispersion equation

and involve various types of interpolation functions to evaluate derivatives of the con-
centration fields, as reviewed by Riehtmyer (1962), Leith (1965), and Roach (1980).
Examples of specific developments are van Leer (1974, 1977) and Russel and Lerner5

(1981). These once-popular schemes usually suffer from substantial numerical viscos-
ity and limited stability, which sets very stringent limitations to the Courant number (the
ratio of the maximum distance passed during the model time step to the model grid
cell size). Consequently, interest has largely shifted towards flux and semi-Lagrangian
schemes for practical applications.10

Flux-type schemes are based on an evaluation of the admixture fluxes at the bor-
ders of the grid cells using some interpolation procedure for determining the concen-
trations and wind speed (e.g., Odman, 1998). Probably the most widely used flux-type
scheme is Bott (1989, 1992, 1993), and its derivatives (e.g., Syrakov, 1996; Syrakov
and Galperin, 1997, 2000) involving different approximation functions (i.e., Bessel func-15

tions instead of Lagrangian polynomials). Although these schemes suffer from both
stability and viscosity problems, they are superior to finite-difference approaches. Flux-
type schemes also require special efforts to maintain mass conservation.

Semi-Lagrangian schemes (e.g., Crowley, 1967, 1968; Egan and Mahoney, 1972;
Pedersen and Prahm, 1974; Smolarkevich, 1982; Prather, 1986; Williamson and Rach,20

1989; Staniforth and Cote, 1991, and references therein; Galperin, 1999, 2000; Sofiev,
2000b) represent the concentrations as a set of masses distributed according to cer-
tain rules inside the grid cell and advect like Lagrangian particles but some properties
are conserved. A sub-class of these schemes include purely Lagrangian schemes
(Eliassen, 1978; Eerola, 1990; Stohl et al., 2005) where the masses are essentially25

independent and transported individually with the follow-up reprojection to the com-
putational grid. These schemes have better numerical viscosity, which can be made
exactly zero (Galperin, 2000), and stability (i.e., their working range of Courant num-
ber is probably the widest out of all types of the advection schemes). However, many
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semi-Lagrangian schemes exhibit large non-monotonicity and other distortions of the
transported field, which require substantial efforts and computational resources to be
kept under control.

By comparison, Lagrangian schemes are rarely used for chemistry composition com-
putations, mainly due to the unbearable overhead of meeting the requirements posed5

by nonlinear chemical transformation mechanisms. Nevertheless, such schemes are
theoretically possible. Such schemes naturally resolve the numerical diffusion problem,
which plagues the performance of almost all Eulerian schemes. Although the diffusion
problem is seemingly inevitable in Eulerian schemes, Lagrangian advection schemes
do not suffer this problem because they lack explicit discretization of horizontal move-10

ment, which is performed in continuous space rather than in predefined grid meshes.
As a result, numerical viscosity of purely Lagrangian schemes is always zero. Such
a result comes at a price of 100% non-monotonicity of the concentration fields, which
originates from limited spatial representativeness of a single Lagrangian particle.

Spectral models (e.g., Kreiss and Oliger, 1972; Prahm and Christensen, 1977; Zlatev15

and Berkowicz, 1988) use Fourier transformation to convert the differential equations
into algebraic ones, which are then solved analytically. Such schemes are more com-
monly used in NWP models than chemical transport models.

One new line of development, often based on semi-Lagrangian schemes, is
adaptive-grid advection algorithms (e.g., Staniforth and Cote, 1991 and references20

therein; Lagzi et al., 2004; Jablonowski, 2004 and references therein; Jablonowski
et al., 2006). These schemes are geared at solving the problems with sharp gradients
in the computed variables and with a wide range of spatial and temporal scales of input
forcing. The advantage of more accurate computations in the sub-domains that require
high resolution outweighs the extra errors introduced by repeated reprojection of the25

main fields, as well as the extra computational time needed for the grid transformation.
The diversity of advection routines developed during the last 50 years and still under

construction is explained by a long list of requirements to such schemes. The most
important ones are: positive definiteness to the scheme, minimal numerical viscosity,
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limited non-monotonicity, sufficiently high stability, absence of phase error, local and
global mass conservation, and sufficiently high numerical efficiency. Unfortunately,
meeting all requirements simultaneously is not possible. For example, more numerical
viscosity smoothes the result, thus improving monotonicity.

The most important criteria when selecting a scheme seems to be the positive defi-5

niteness of the algorithm (i.e., a guarantee that mass will remain positive after the ad-
vection step) and monotonicity (i.e., minimizing high-frequency fluctuations of the field).
These two criteria can be optimised to some extent at a cost of substantial numerical
viscosity, which is a common problem for most of the Eulerian advection schemes.
Only the scheme of Galperin (1999, 2000) has exactly zero numerical viscosity, but at10

a somewhat increased non-monotonicity of instant concentration fields and additional
memory requirements.

Other criteria, sometimes mentioned but rarely taken with the highest priority, are:
minimization of phase error (i.e., correct representation of the transport velocity), the
scheme transportivity (i.e., shift of the centre of mass of a puff from the analytical15

solution), and additivity (i.e., correct treatment of superimposed puffs). Two features of
the schemes have somewhat outstanding importance: the conservation of mass and
costs of the computations. The mass-conservation problem is usually considered as
the highest priority in the chemistry-transport models, so that schemes that significantly
violate this requirement are excluded from consideration. Finally, the efficiencies of20

the advection schemes (both in terms of the computational time and memory) are
potentially important, but rarely considered more important than positive definiteness
or mass conservation.

Interestingly, these two features are not the most important aspects to be considered
for NWP models. Although the conservation of mass is desirable in NWP models, this25

criterion is usually compromised, if an algorithm that is not exactly conservative has
a better performance or monotonicity.

Within the 18 models considered in this review, only a few use the same type of
solutions. There is, however, a general lack of detail regarding the descriptions of
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the advection mechanisms in the publications for each of the models, which sug-
gests that the schemes are implemented with minor, if any, deviations from the origi-
nal source. Examples of the schemes used by the selected models are: Bott (1989)
(CAMx, Enviro-HIRLAM, MATCH), Piecewise Parabolic Method (PPM) of Colela and
Woodward (1984) (CAMx and CHIMERE), Walcek (2000) (RCG, LOTOS-EUROS), Ya-5

martino (1993) and Wicker and Skamarock (2002) (CMAQ, WRF-Chem and FARM),
Williamson and Rash (1989) (semi-Lagrangian scheme of MOCAGE), Eerola (1990)
(Lagrangian SILAM kernel), Galperin (1999, 2000) (Eulerian SILAM kernel), Janjic
(1997) (SKIRON/Dust), Zlatev (1995) (THOR), and Cullen (1993) (NAME).

Some models have more than one advection algorithm. In particular, CAMx has an10

alternative between Bott and PPM, as well as an optional Plume-in-Grid formulation
for representing the large point sources in the lower-resolution grid. The Plume-in-Grid
option is also available in CMAQ. Enviro-HIRLAM has as options also semi-Lagrangian
schemes, in particular the CISL (Kaas, 2008). SILAM has two dynamic kernels: La-
grangian and Eulerian, either can be selected for a particular run via a switch in the15

model control file.

4.2 Horizontal and vertical turbulent diffusion

Meteorological models drive the chemistry transport models for solving atmospheric
diffusion equations for trace species. Diffusion is treated fully in meteorological models,
whereas only horizontal and vertical turbulent diffusion is treated in chemistry transport20

models.
The horizontal diffusion is based on the Smagorinsky approach (1963) within the

models ALADIN-CAMx, SKIRON/Dust, FARM, CAMx-AMWFG and MM5-CAMx. The
models MM5-CHIMERE, MM5-CAMx and MM5-CMAQ use the Medium Range Fore-
cast Planetary Boundary Layer (MRF PBL) scheme. The MM5 model uses several25

PBL schemes: Bulk PBL, high resolution Blackadar PBL, Burk Thompson PBL, Eta
PBL, Gayno-Seaman PBL and Pleim-Chang PBL. The SILAM system involves two
approaches, depending on the kernel: the solution with the Lagrangian kernel uses
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prescribed horizontal diffusion via random particle relocation at each model time step
(Eerola, 1990); the Eulerian one includes an embedded algorithm that reflects the
main features of the K -closure model; the horizontal eddy diffusivity is dependent on
the wind speed.

For the description of the vertical diffusion, the K -diffusion scheme is widely used,5

but otherwise, there are not many similarities between different models. In ALADIN-
CAMx and MOCAGE, the vertical diffusion is calculated according to the Louis (1979)
approach, which uses the Richardson number and the mixing length. Two convective
boundary layer schemes are implemented in OPANA: Blackadar and the Asymmetric
Convective Model (ACM, Pleim and Chang, 1992). OPANA also includes local diffu-10

sion, vertically continuous integration, smooth transition from stable to convective and
faster matrix solver, and updated eddy diffusion scheme.

RCG’s vertical turbulent mixing formulation uses K -diffusion in combination to mixing
height, which is treated as one layer above a 50-m surface layer. Its stable and convec-
tive boundary layer diffusion coefficients are based on PBL scaling regimes. Therefore,15

vertical mixing is dominated by the time-dependent evolution of the mixed layer.
FARM also uses K -diffusion, eddy viscosities can be produced by the meteorolog-

ical driver or by the preprocessor SURFPRO (SURrface atmosphere interFace PRO-
cessor), which can choose among different parameterisations, based on atmospheric
boundary layer (ABL) scaling. In MM5-CHIMERE, the vertical turbulent mixing takes20

place only in the boundary-layer. The formulation uses K -diffusion, without the counter-
gradient term. The vertical diffusion is mainly modelled with the ACM2 in MM5-CMAQ;
WRF/CHEM uses the PBL parameterization by the Yonsei University (YSU).

The Eulerian kernel in SILAM is modelled according to the K -closure, with the ap-
proach of Genikhovich et al. (2004) used for the evaluation of Kz. The Lagrangian ker-25

nel within SILAM assumes a well-mixed ABL and fixed random-walk parameters in the
free troposphere. Exchange between the ABL and the troposphere in the Lagrangian
version takes place due to variation of the ABL height. In MATCH the turbulence is pa-
rameterized using three primary parameters: the surface friction velocity, the surface
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sensible heat flux and the boundary layer height.
The main limitation of the Lagrangian system of SILAM is the assumption of a well-

mixed ABL. For the Eulerian SILAM variant, the K -closure is used for diffusion in the
vertical direction and also for horizontal diffusion. The eddy diffusivity of the vertical
profile is evaluated at every time step by Sofiev et al. (2010). The limitations on a large5

scale originate partly from the simplified free-troposphere diffusion. The Lagrangian
kernel assumes fixed mixing coefficient, while the Eulerian one assumes 10% of the
ABL maximum Kz value. In LOTOS-EUROS, the mixing layer is treated as one layer
and the ground level output is generated by assuming a vertical profile near the ground
based on the deposition velocities.10

4.3 Chemistry

Presently the main air-pollution issues in Europe are the human health impacts of
exposure to particulate matter and ozone, and to a lesser extent nitrogen dioxide, sul-
phur dioxide, carbon monoxide, lead and benzene (EEA, 2007). Ozone is formed in
the atmosphere in photochemical reaction cycles, which brings the ozone precursors15

(i.e. NOx, VOCs) and their gas-phase atmospheric chemistry, to the focus of CWF.
All state-of-the-art chemical modules in most of the modelling systems in this review
include these reaction cycles.

The choice of a chemical scheme for a CWF model is always a compromise be-
tween its complexity, the requirements and restrictions of the modeling system, how20

it is applied, and the available computational resources. Basic gas phase inorganic
chemistry is usually included in all models, and the schemes are often quite similar
because inorganic atmospheric chemistry is well established.

A photochemical oxidation mechanism of VOCs is a must in any CWF model aiming
to predict the ozone concentrations – here the models may differ considerably, with dif-25

ferent levels of detail and different parameterisations. In addition to the anthropogenic
VOCs, the oxidation of biogenic VOCs should be included, especially if the model do-
main covers regions with dense forests. Aqueous oxidation of the sulphur compounds
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and transfer of species from the gas phase into aqueous and solid phases can also
be included, depending on the focus of the modeling system. Several approaches
have been developed, which typically involve the simplification of more comprehensive
chemical schemes to include only the key chemical constituents and processes. In the
following, concise descriptions of some viable approaches are given.5

The most commonly used chemical sub-model types among the chemical weather
prediction models to be discussed in this review are (in alphabetical order): CBM-IV,
ISORROPIA, MELCHIOR, NWP-Chem, RADM2, SAPRC-99, and UNI-OZONE. Some
characteristics of these chemical submodels are compared in Table 4.

The implementation of the chemical mechanisms in the chemical weather predic-10

tion systems often involves adaptations, updates or other modifications of the original
scheme. These changes are not always well documented or transparent. Therefore
only the general features of the original chemical schemes are discussed below. In
the following, the models using the different chemical modules are listed in brackets
in the titles. More information about the details of the implementation of any chemical15

submodule in a particular CWF system can be found at the web sites of the prediction
systems. A list of references on the comparisons of various chemical submodules is
presented in Table 5.

Carter’s one-product isoprene oxidation scheme (Carter, 1996) is adopted for bio-
genic compounds in several models, and the ISORROPIA thermodynamic equilibrium20

scheme (http://nenes.eas.gatech.edu/ISORROPIA/, Nenes et al., 1998a,b) is used to
determine the physical state and composition of inorganic aerosols in many modeling
systems. ISORROPIA does not consider aerosol size distributions or aerosol micro-
physical processes, which is why it is included in this section with other purely chemical
schemes, instead of in Sect. 4.4.25

4.3.1 CBM-IV (CAMx, CMAQ, LOTOS-EUROS, OPANA, RCG, SILAM)

The Carbon bond mechanism IV (CBM-IV, also called CB-IV; Gery et al. 1989; http://
airsite.unc.edu/soft/cb4/cb4main.html) is a lumped-structured condensed mechanism.
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The carbon bond approach is used to lump organic species. The code treats the re-
actions of four different types of species: inorganic species, explicit organic species,
organic species represented by carbon surrogates and organic species that are rep-
resented by molecular surrogates. Inorganic chemistry is represented explicitly with
no lumping. Organics represented explicitly are formaldehyde, ethene and isoprene.5

Carbon bond surrogates describe the chemistry of different types of carbon bonds
commonly found as parts of lager molecules. CBM-IV is widely used in research and
regulatory air quality models as Models-3/CMAQ (Byun and Ching, 1999).

4.3.2 ISORROPIA (CAMx, CHIMERE, CMAQ, LOTOS-EUROS, RCG, FARM)

ISORROPIA (“equilibrium” in Greek) is a thermodynamic equilibrium aerosol module10

designed for the calculation of equilibrium concentrations of semi-volatile inorganic
species (Nenes et al., 1998a,b; Fountoukis and Nenes, 2007). The aerosol system
consists of sulphate, nitrate, ammonium, sodium, chloride and water, partitioned be-
tween gas, liquid and solid phases. Aerosol particles are assumed to be internally
mixed (i.e. all particles of the same size have the same composition), and the model15

also determines the water content of the particles. In ISORROPIA, four distinct chem-
ical species are possible in the gas phase, twelve in the liquid phase and nine in the
solid phase. The number of species and equilibrium reactions solved in the calculation
is determined by the relative abundance of each aerosol precursor (NH3, Na, HNO3,
HCl, H2SO4) and the ambient relative humidity and temperature.20

ISORROPIA has been optimized for speed and robustness for application in urban,
regional and global air-quality models. The performance of ISORROPIA has been
evaluated against several in-situ datasets (e.g., Nowak et al., 2006) and compared
to other thermodynamic equilibrium schemes (e.g., Nenes et al., 1998b; Ansari and
Pandis, 1999a,b; Yu et al., 2005). A new version of the ISORROPIA module, called25

ISORROPIA II (not used at the moment in any of the discussed CWF models), which
includes the treatment of the crustal species (Ca, K, Mg), is available online at http:
//nenes.eas.gatech.edu/ISORROPIA/.

6027

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/5985/2011/acpd-11-5985-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/5985/2011/acpd-11-5985-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://nenes.eas.gatech.edu/ISORROPIA/
http://nenes.eas.gatech.edu/ISORROPIA/
http://nenes.eas.gatech.edu/ISORROPIA/


ACPD
11, 5985–6162, 2011

Operational, regional-
scale, chemical

weather forecasting
models in Europe

J. Kukkonen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

4.3.3 MELCHIOR (CHIMERE)

The MELCHIOR (Modele Lagrangien de Chimie de l’Ozone a l’échelle Régionale;
http://www.lmd.polytechnique.fr/chimere/; Schmidt et al., 2001) chemical mechanism
was originally developed from an earlier version of the EMEP model chemistry (Simp-
son, 1992; Vautard et al., 2001), with special attention to low NOx conditions and5

nighttime (NO3) chemistry. The original extended version of the mechanism includes
more than 300 chemical reactions of 80 gaseous species, whereas the reduced version
(MELCHIOR2) treats 44 species and about 130 reactions. MELCHIOR2 has explicit
oxidation schemes for methane, ethane, n-butane, ethene, propene and o-xylene. Bio-
genic compounds are represented by isoprene, α- and β-pinene, and lumped terpene,10

humulene and ocimene classes. Eight chemical operators (Carter, 1990; Aumont et al.,
1996) are introduced in the reduced mechanism as surrogates for groups of reactive
intermediates. In addition to the MELCHIOR2 gas-phase chemical mechanism, the
CHIMERE modeling system also incorporates a sectional aerosol module with primary
and secondary particles, multiphase sulphur and nitrogen chemistry, and the thermo-15

dynamic equilibrium scheme ISORROPIA (Nenes et al., 1998a,b).
The model has been applied e.g. to the simulation of air-pollution episodes at re-

gional and urban scales and ozone-trend analyses (Beekmann and Vautard, 2009, and
references therein). The CHIMERE/MELCHIOR modeling system has also been used
in operational forecasting of pollutant levels over Western Europe for several years,20

and it has been extensively compared to observations (http://www.prevair.org; Honoré
et al., 2008).

4.3.4 NWP-Chem (Enviro-HIRLAM)

The NWP-Chem scheme is an economical scheme designed at DMI for operational
forecasting (Korsholm et al., 2008). It consists of the NWP-Chem-Gas gas-phase25

chemistry scheme and thermodynamic equilibrium model NWP-Chem-Liquid. The
scheme includes 27 main reactions and describes the basic chemistry of the photo-
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oxidation of VOC to peroxy radicals, the most important NOx reactions, the most im-
portant ozone formation reactions, sulphur (DMS=dimethyl sulfide is included) and
isoprene chemistry (biogenic emissions of isoprene α-pinene and other terpenes af-
fects gas-phase chemistry – such as ozone – as well as aerosol formation). In the
present version of NWP-Chem-Gas, the ordinary differential equations are solved us-5

ing the quasi-steady-state approximation (Hesstvedt et al., 1978).

4.3.5 RADM2 (CAMx, CHEM, CMAQ, Enviro-HIRLAM, EURAD, OPANA,
WRF/CHEM) and RACM (Enviro-HIRLAM, EURAD, MOCAGE)

The second-generation Regional Acid Deposition Model (RADM2) gas-phase chemical
mechanism (Stockwell et al., 1990) was developed from the earlier RADM mechanism10

(Stockwell, 1986). The emissions were aggregated into model species based on simi-
larities in chemical reactivity, organic functional groups and the reactivity of the organic
compounds with OH. The aggregation factors, rate parameters and product yields for
the organic reactions were derived from the organic emissions aggregated into each
model species (Middleton et al., 1990).15

An evolution of RADM2-RADM, RACM (Regional Atmospheric Chemistry Mecha-
nism), was proposed in (Stockwell et al., 1997). The absorption cross sections and
quantum yields that are required input for a program that calculates photolysis rate
constants from calculated actinic flux (Madronich, 1987). The mechanism was evalu-
ated against data obtained from the University of California, Riverside, environmental20

chamber database (Carter et al., 1995).

4.3.6 SAPRC-99 (ALADIN-CAMx, CMAQ, FARM, OPANA)

The chemical mechanism developed at the Statewide Air Pollution Research Center
in Riverside, California (SAPRC-99) is a detailed mechanism for the gas-phase atmo-
spheric reactions of volatile organic compounds (VOCs) and oxides of nitrogen (NOx)25

in urban and regional atmospheres (http://www.engr.ucr.edu/∼carter/SAPRC99/). The
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scheme can be used in airshed models to determine absolute and relative ozone re-
activities of the many types of VOCs that can be emitted into the atmosphere, and for
other control strategy and research applications. This mechanism represents a com-
plete update of the Carter’s (1990) SAPRC-90 mechanism and incorporates recent
reactivity data from a wide variety of VOCs. The mechanism has assignments for5

about 400 types of VOCs and can be used to estimate reactivities for about 550 VOC
categories.

A condensed version of SAPRC-99 was developed for use in regional models.
A unique feature of this mechanism is a computational system to estimate and gener-
ate complete reaction schemes for most non-aromatic hydrocarbons and oxygenates10

in the presence of NOx, from which condensed mechanisms for the model can be
derived. The mechanism was evaluated against the results of approximately 1700 en-
vironmental chamber experiments carried out at the University of California, Riverside,
including experiments to test ozone reactivity predictions for over 80 types of VOCs.
The mechanism was used to update the various ozone reactivity scales developed by15

Carter (1994), including the widely used Maximum Incremental Reactivity (MIR) scale.
However, the reactivity estimates for many VOC classes are uncertain, which must be
taken into account when using these data for regulatory applications. For this reason,
uncertainty classifications have been assigned to all VOCs, and upper limit MIRs for
VOCs with uncertain mechanisms are presented.20

A new version of the SAPRC chemical mechanism called SAPRC-07 (not used at the
moment in any of the discussed CWF models) is available online at http://www.engr.ucr.
edu/∼carter/SAPRC, including references to detailed description about improvements
and new compounds in the new version.

4.3.7 SILAM acid basic (SILAM)25

The scheme is a further development of the DMAT model algorithm (Pressman et al.,
1991; Galperin and Sofiev, 1998; Sofiev, 2000) and is oriented for the treatments of the
production processes of the secondary inorganic aerosols, such as sulphates, nitrates
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and ammonia. It includes 29 species, 12 photochemical, 27 inorganic and 12 methane
and ethane reactions. Most of reactions take place in the gas phase and constitute the
oxidation of SOx, NOx, and NHx.

The ozone cycle is considered via the photostationary equilibrium shifted in the pres-
ence of organic species. This approach does not lead to an accurate ozone estimation5

but is sufficient for partitioning of NOx to NO and NO2. Aqueous-phase and heteroge-
neous reactions are responsible for within-droplet SO2 oxidation, N2O5 hydrolysis and
three-component equilibrium between ammonium, ammonium nitrate, and nitric acid,
the description of which generally follows Finlayson-Pitts and Pitts (1998).

The previous version of the scheme has been evaluated within the scope of EMEP10

programme (Sofiev et al., 1994) and a multi-annual evaluation was made by Sofiev
(2000). The current scheme version is used in the MACC project with daily operational
evaluation (http://www.gmes-atmosphere.eu). A comparison with NO2 total column
observed by OMI instrument onboard of Aura NASA spacecraft has been performed
by Huijnen et al. (2010).15

4.3.8 UNI-OZONE (EMEP model, MATCH (EMEP-MSC-W))

The chemical scheme of the Unified EMEP Model (UNI-OZONE, http://www.emep.int/
OpenSource/index.html; Simpson et al., 2003) contains full oxidant chemistry, gas and
aqueous oxidation of SO2 to sulphate, ammonium chemistry, nighttime production of
HNO3 and nitrate, coarse nitrate particle formation, as well as the advection of primary20

particles. Therefore, the scheme provides comprehensive chemistry for both photo-
oxidant and acidification studies. The VOC scheme is lumped, with explicit oxidation
mechanisms for methane, ethane, ethanol, n-butane, ethene, propene, o-xylene and
isoprene.

The EMEP model is under constant revision by the Executive Body for the Con-25

vention on Long-range Transboundary Air Pollution (LRTAP). In the 1990s, the EMEP
models also became the reference atmospheric dispersion model for use in the In-
tegrated Assessment Models supporting the development of air-quality polices under
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the EU Commission. The chemical schemes of the EMEP model have been exten-
sively intercompared with other atmospheric chemistry models (e.g., Kuhn et al., 1998;
Andersson-Sköld and Simpson, 1999; Gross and Stockwell, 2003; Jimenez et al.,
2003; Cuvelier et al., 2007; Vautard et al., 2007).

4.3.9 Synthesis and recommendations5

All chemical sub-models discussed in this chapter are implemented at least in one
CWF model. Several comparisons of the chemical schemes and also the modeling
systems have been carried out and are documented in the literature. However, no one
study covers all the schemes or sub-models discussed here, and both the objectives
and the implementation of the intercomparisons differ greatly. Thus, it is not possible to10

rank the performance of the sub-models in relation to each other, based on the existing
literature.

Table 5 provides a comprehensive overview of the intercomparisons between differ-
ent chemical schemes, including some that were not part of this study. A common
conclusion in several of the documented intercomparisons appears to be that most15

models are able to reproduce or predict the ozone concentrations fairly well, whereas
they do not perform as well in simulating other compounds, such as NOx and their reac-
tion products (e.g., Kuhn et al., 1998; Gross and Stockwell, 2003; Jimenez et al., 2003;
Vautard et al., 2007; Luecken et al., 2008). The skill of the models in simulating PM10
concentrations has also been poor or moderate (e.g., Vautard et al., 2007). A better20

understanding of the VOC oxidation mechanisms, especially because of their impor-
tant role in secondary organic aerosol (SOA) formation (e.g., Kanakidou et al., 2005;
Tunved et al., 2006) and the implementation of these processes in the CWF modeling
systems also presents a formidable future challenge for the chemical scheme.

The relative importance of the different components of chemical schemes (e.g., in-25

organic, organic, and aqueous phase chemistry) depends on the scientific aim and the
applications of the CWF modeling system. Clearly, besides the structure of the chem-
ical sub-module, the amount of available computer resources is another limiting factor
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for the accuracy of the concentration predictions. Available computer power may set
an upper level for the complexity of the chemical schemes that can be incorporated in
the CWF modeling systems. The aim for any CWF model is therefore to find the chem-
ical sub-model with the best balance between scientific accuracy and computational
efficiency.5

4.4 Aerosols

The demands for more accurate and detailed aerosol-size distribution, microphysics
and chemistry description capability in atmospheric models have increased dramati-
cally during recent years. On the one hand, this is due to the fact that aerosols repre-
sent the largest uncertainty in global climate models when predicting radiative forcing;10

this has been stated, e.g., in the last Intergovernmental Panel on Climate Change
(IPCC) report (Solomon et al., 2007). On the other hand, and more relevantly to this
review, particle size, composition and morphology are crucial to estimate lung pene-
tration of aerosols and their health effects. This important motivation has resulted in
a development and refinement of aerosol modules that are used in CWF models.15

Atmospheric particulates have numerous sources, ranging from primary emissions
(such as dust or pollen) to complicated aerosol formation processes involving gas
phase, liquid phase and surface reactions. This presents several challenges to CWF
models, especially as only a limited number of aerosol process sub-models are gener-
ally available, and the state-of-the-art has not yet been established. As in the case of20

chemistry modules, there is no generally recognised single model that would be widely
used by most of the CWF models.

Air-quality models also commonly include only a small fraction of the particulate
matter components; this commonly leads to an underprediction of PM mass values.
E.g., in most cases, natural pollen is missing, suspended dust may be missing or not25

accurately evaluated, sea salt and emissions from wild-land fires may be missing, and
secondary organic compounds are in many cases poorly represented.
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The different aerosol description options can be classified by a) how the size dis-
tribution is represented and b) what kind of aerosol microphysics is included in the
modelling system. We classify the aerosol process methods in the following according
to the way they represent the size distribution. These can be grouped in three differ-
ent categories: bulk schemes, modal schemes and sectional schemes. Some models5

have only one choice for the aerosol size distribution description, whereas others have
several options.

One limitation to using detailed aerosol size distribution and composition descrip-
tions arises from the lack of size- and composition-segregated emission data. The
emission inventories are typically based on total mass only, and using a modal or sec-10

tional scheme requires assumptions about the emission size and chemical composition
distributions.

The state-of-art at present consists of a size-resolved sectional representation for
the aerosol size distribution with equilibrium chemistry partitioning packages for both
inorganics and organics. In addition, all major microphysical processes (nucleation,15

coagulation, condensation, wet and dry deposition) are included, as well as schemes
for biogenic and anthropogenic secondary organic aerosol (SOA) formation. Table 6
lists different characteristics of each of the various aerosol modules.

4.4.1 Bulk schemes

In bulk schemes, typically the total mass of suspended particles (TSP) or the mass in20

a certain size interval, or several non-interacting intervals, is modelled. The intervals
are typically one or some combination of PM1, PM2.5, PM10 and TSP. Such an approach
is computationally efficient, but naturally has severe limitations, when size-dependent
processes are important.

To estimate the health effects of the respirable particles better, the focus of both mea-25

surements and modelling has gradually moved from PM10 and TSP to PM2.5 and PM1.
Since the lung penetration function and the health effects are in a complicated man-
ner dependent on both the size and chemical composition, bulk schemes will likely be
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replaced gradually by the more accurate (but computationally more expensive) modal
and sectional schemes.

4.4.2 Modal schemes

In modal schemes, the aerosol size distribution is represented by a number of modes,
the properties of which are modelled as functions of time and location. This typically5

involves a pre-described assumption (e.g., log-normal) of the functional form of the
modes. This approach is computationally more expensive than bulk methods, but less
resource-consuming than sectional methods. For this reason, such schemes have
been quite common in regional and global models. The performance of modal schemes
is limited, when new-particle formation is important.10

4.4.3 Sectional schemes

In sectional schemes, the continuous size distribution is replaced by a number of dis-
crete bins (i.e., the size distribution is approximated by a histogram). The model has
equations for the particle concentration (number or mass) and chemical composition
that are solved for each bin. The sectional scheme is the most flexible and accurate15

one, but it is computationally the most expensive. With increasing computing power
and memory, more CWF models are adopting sectional schemes as their choice for
aerosol size distribution representation. A major challenge for CWF’s using sectional
aerosol representations is improving the quality and level of detail of the emission in-
ventories to match the sophistication of the rest of the model.20

4.4.4 Aerosol microphysics

The main microphysical processes affecting the aerosol size distribution are nucleation,
condensation/evaporation, coagulation and deposition. Nucleation, or the formation of
new particles through a gas to particle phase change, has been observed to occur
throughout the atmosphere (e.g., Kulmala et al., 2004) and is an important particle25
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source, especially in the nucleation and Aitken mode size ranges. Clearly, particle
growth by condensation does not change the number concentration, but alters parti-
cle size and the mass concentration. Atmospheric coagulation is typically a process
between small nucleation or Aitken mode particles and larger accumulation-mode or
coarse-mode particles. Coagulation does not change the mass concentration, but de-5

creases the number concentration of particles.
In bulk schemes, typically only deposition is considered, without an accurate way

to describe its dependence upon particle size. Condensation/evaporation is usu-
ally treated by assuming equilibrium between the gas and particle phases, by using
a chemical equilibrium thermodynamics scheme, such as ISORROPIA, or the Equi-10

librium Simplified Aerosol Module (EQSAM). In sectional and modal schemes, all the
above-mentioned microphysical processes can be adequately described, which is im-
portant especially, when detailed information is desired on the particle number concen-
tration distribution or the chemical composition distribution as a function of size.

4.5 Deposition15

Dry and wet deposition are processes that remove pollutants from the atmosphere.
Not only are accurate schemes required for producing realistic concentrations of pol-
lutants in the atmosphere, but deposited pollutants can affect soil and vegetation (e.g.,
acidification) and water bodies (e.g., eutrophication). The spatial distributions of wet
and dry deposition are therefore commonly assessed in the various long-term envi-20

ronmental assessment programmes (e.g., EMEP). Uncertainties in modelling depo-
sition, however, can limit accurate forecasts of ground-level pollutant concentrations.
For example, sensitivity tests by Wesely and Hicks (2000) showed that daytime ozone
concentration could increase by about 20%, when dry deposition is not acting.

References and brief characterizations of the dry and wet parameterization schemes25

used in the CWF models considered are summarized in Table 7.

6036

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/5985/2011/acpd-11-5985-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/5985/2011/acpd-11-5985-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 5985–6162, 2011

Operational, regional-
scale, chemical

weather forecasting
models in Europe

J. Kukkonen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

4.5.1 Dry deposition

Dry deposition is governed by the turbulent and molecular diffusion of pollutants in
the atmosphere. The amount of deposition depends upon the characteristics of the
surface, vegetation, and the characteristics of the depositing species (e.g., the solubility
and chemical reactivity for gases and the size distribution and chemical composition5

for particles). Gravitational settling also needs to be accounted for for coarse particles.
E.g., Seinfeld and Pandis (1998) and Sportisse (2007) provide a more comprehensive
description of deposition.

Therefore, a successful dry deposition scheme should be capable of reproducing
both the boundary-layer turbulent fluxes and the interaction between the pollutant10

and the surface. The choice of parameterization is conditioned by the meteorological
model, which provides the surface-layer turbulence, by the surface and soil character-
istics and by input data availability. For example, in regional models, bulk schemes for
canopies (often called big-leaf schemes) are generally preferred to so-called multi-layer
canopy models. The latter could be considered more suitable to describe deposition15

processes within tall canopies, but their use may be hindered by the lack of input data
to describe the vertical structure of vegetation.

Dry deposition is commonly formulated in Eulerian models as a boundary condition
at the ground surface for the vertical diffusion term of the pollutant transport equation.
In this term, a species-dependent vertical concentration flux is the product of a de-20

position velocity Vd and the surface concentration. In state-of-the-art CWF models,
the mathematical treatments of the dry deposition for gases and aerosols are usually
based on the resistance analogy, where the inverse deposition velocity is the sum of
three different resistances in series (V −1

d =Ra +Rb +Rc): the aerodynamic resistance
Ra, due to turbulent diffusion, the quasi-laminar layer resistance Rb, due to molecular25

diffusion, and the canopy resistance Rc, due to the capture of pollutants by the surface
(e.g., Wesely, 1989; Seinfeld and Pandis, 1998).
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Differences in modelling dry deposition among various CWF models arise from dif-
ferent ways to estimate the resistance terms, but also arise from the way the models
are interfaced with the meteorological models. The aerodynamic and quasi-laminar
resistances are a function of the atmospheric stability and friction velocity (u∗), which
depend on the coupling strategy chosen for each modelling system. Online coupled5

models and some offline coupled models use parameters (e.g., surface momentum
flux) provided by the meteorological model, while other offline models prefer to re-
estimate them through diagnostic parameterizations usually based on similarity theory.
These different approaches can cause differences in the predicted deposition, even if
we consider models implementing the exactly same parameterization.10

The dry deposition schemes in the CWF models in this study are largely similar. The
aerodynamic resistance Ra and the quasi-laminar sub-layer resistance Rb are param-
eterized in terms of the friction velocity, surface roughness and molecular diffusivity of
species (Wesely and Hicks, 1977; Walcek et al., 1986; Hicks et al., 1987; Chang et al.,
1987, 1990; Wesely, 1989). This approach is adopted by CAMx, CHIMERE, FARM,15

LOTOS-EUROS, MOCAGE, NAME, RCG, SILAM, THOR and EnviroHIRLAM.
Greater differences among the CWF models occur for the parameterization im-

plemented for the surface resistance Rc (Table 7). Usually, the surface resistance
is expressed as a set of parallel resistances associated with leaf stomata, leaf cu-
ticles, lower canopy resistances (e.g., bark, stems), and surface soil and water.20

Over land, Rc can be expressed as the sum of foliar (Rcf) and ground (Rcg) resis-
tances (1/Rc =1/Rcf +1/Rcg), and foliar resistance is subdivided in stomatal (Rst) and
non-stomatal or cuticle (Rcut) resistances (1/Rcf =1/Rst +1/Rcut). Many different ap-
proaches have been developed for the calculation of stomatal resistance, varying from
a simple function of solar radiation and temperature (Wesely, 1989), a big-leaf ap-25

proach taking into account air temperature and humidity, together with leaf-area index
and canopy wetness (Hicks et al., 1987), to a multilayer leaf-resistance model (Baldoc-
chi et al., 1987).
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For non-stomatal resistance, a constant value is often chosen, depending on sea-
son and land type (e.g., Wesely, 1989). Other models use meteorological variables
such as u∗ and canopy height as scaling parameters to characterize in-canopy aerody-
namic resistance, and relative humidity to describe in the cuticle resistance (Erisman
et al., 1994). A more detailed parameterization for cuticles taking into account meteo-5

rological and season dependent vegetation parameters has been proposed by Zhang
et al. (2003). The parameterizations implemented within each model are summarized
in Table 7.

The dry deposition velocity of particles Vd can be written as Vd = Vs + (Ra +Rb +
RaRbVs)−1, where Vs is the settling velocity. The previous formula is derived assum-10

ing that particle settling operates in parallel with the three resistances in series already
introduced for gases. This approach is implemented in almost all the CWF models
(Table 7).

Although the differences of these mathematical treatments may seem small, they
can nevertheless result in substantial differences to the model predictions. For exam-15

ple, Sportisse (2007) showed that the implementation of a different mass-conserving
formula, expressed as Vd = Vs(1− exp(−Vs(Ra +Rb))−1 (Venkatram and Pleim, 1999),
can reduce coarse-particle deposition velocities in low-wind conditions by up to 20%.
Published comparisons of deposition velocities obtained by different models applied
on the same areas showed uncertainties of ±30% (Wesely and Hicks, 2000). Timin20

et al. (2007) performed a sensitivity analysis of CMAQ surface concentrations to the
dry deposition scheme, showing that the simpler scheme available in CMAQ (based
on Wesely, 1989) produces lower deposition velocities for all the species, and ozone
8 h average concentrations increased up to 10–20 ppb, with respect to the more up-to-
date M3Dry scheme (Pleim et al., 2001). Dry deposition parameterization has been25

identified as one of the main causes of differences between their CMAQ and CAMx
simulations.

In their summary of dry deposition, Wesely and Hicks (2000) found that resistance
schemes are quite reliable in daytime conditions over flat terrain, but are less reliable
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for mountainous areas and during nighttime stable conditions. The reasons are that
the parameterizations of aerodynamic resistance, usually based on surface layer sim-
ilarity theory, do not provide an accurate evaluation of turbulent mixing during stable
stratification and in complex terrain.

Additional uncertainties reside in the subgrid variation of surface and land use fea-5

tures, where horizontal advection effects are not considered in summing the contri-
butions from different patches with different surface effects. For homogeneous atmo-
spheric and surface conditions, improper definition of surface features, e.g., vegetation
and soil moisture, can result in large differences between modeled and measured de-
position. Zhang et al. (2003) showed that a detailed description of cuticles and soil10

resistances can improve the description of daily variation and maximum value of depo-
sition velocity for wet canopies. In such conditions, stomatal uptake is not important,
due to stomata blocking by waterdrops and to the presence of very weak solar radia-
tion.

Petroff et al. (2008) recently compared performances of selected analytical and differ-15

ential dry deposition models for aerosols versus measurements over grass and forest.
Analytical models rely on parameterizations of different complexity, as those previously
mentioned for the different resistances. Differential models solve the differential trans-
port equations for the different chemical species within the canopy layer, and require
as input vertical profiles of parameters describing vegetation features, as the leaf area20

density.
Differences in the deposition velocity of up to one order of magnitude have been

obtained for fine particles (Petroff et al., 2008). Analytical models (Slinn, 1982; Zhang
et al., 2001) displayed small variations in the deposition velocity, when applied to grass
and forest. In contrast, differential models (Davidson et al., 1982; Wiman and Agren,25

1985) exhibited large differences in deposition velocity, but showed a strong depen-
dence on parameters describing canopy geometry and aerodynamics, such as the leaf
area index, obstacle size, roughness length and displacement height, that can be diffi-
cult to properly determine for regional model applications.
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4.5.2 Wet deposition

Wet deposition refers to scavenging of contaminants and their transport to the earth
surface by atmospheric hydrometeors and is usually subdivided into in-cloud scav-
enging (rainout) and below-cloud scavenging (washout). Although dry deposition is
introduced in Eulerian numerical models as a lower boundary condition in flux form,5

wet deposition is described as a depletion term within transport-diffusion equation for
pollutants concentration and can be parameterized by dC/dt= −ΛC, where C is the
substance concentration and Λ is the scavenging coefficient (s−1). The scavenging co-
efficient is different from zero where precipitation occurs and in presence of condensa-
tion (clouds or fog). The existing computational schemes for the scavenging coefficient10

range from simple functions of rain rate and cloud-water content, to complex models
describing the system of physical, microphysical and chemical processes that charac-
terize the interaction of gases and aerosols with cloud condensate and precipitation
(e.g., Seinfeld and Pandis, 1998; Sportisse, 2007).

Simple parameterizations can be considered that could potentially be sufficient to15

CWF models, especially for offline coupled models, which have no access to the
full meteorological model microphysics. For a reliable short-term estimate of near-
ground air-pollutant concentrations, below-cloud scavenging is expected to dominate,
at least in areas characterized by relevant local and regional emissions, where short-
range transport dominates over long-range contribution, such as, e.g., in continental20

and Mediterranean Europe. Neglecting in-cloud scavenging should underestimate the
mass of deposited pollutant, but have only a weak effect on surface concentrations.
Moreover, cloud–aerosol interactions can modify precipitation rate and its spacial dis-
tribution, and therefore indirectly influence near-surface scavenging. However, these
phenomena can be described only by online coupled CWF’s that can implement cloud–25

pollutant interactions and can take into account feedback effects of air pollution on
meteorology.
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Wet deposition schemes vary much more than the dry deposition schemes for the
operational CWF models in this article. For example, LOTOS-EUROS, MATCH, FARM
and RCG use simple parameterizations of scavenging rates that are similar to those
implemented in the EMEP Unified model (Simpson et al., 2003). These depend on
Henry’s law constant, rain rate and cloud water mixing ratio for gases, and on particle5

size, precipitation intensity and raindrop fall speed for aerosols. The possible release
of scavenged gases and aerosols due to cloud- or rain-water evaporation is not taken
into account by the latter parameterization. In contrast, NAME, SILAM and THOR use
scavenging coefficients depending upon cloud type (convective vs. stratiform) and pre-
cipitation type (rain vs. snow). Other models, such as CHIMERE and EnviroHIRLAM,10

use more complex in-cloud and below-cloud scavenging parametrizations, whereas
LOTOS-EUROS and RCG neglect in-cloud scavenging.

Even though rain has a polydisperse distribution of drop size and pollutant scav-
enging is dependent upon the fall velocity of the droplets, expressing the scavenging
coefficients as a simple function of rain rate appears to be justified. However, it is de-15

pendent upon the properties of the pollutant (Mircea and Stefan, 1998; Andronache,
2003; Sportisse, 2007). The main uncertainty of this simplified approach, implemented
in almost all the considered CWF models, is contained in the evaluation of rain inten-
sity and its variability within the time interval, over which it is output from the NWP
model. Although wet deposition seems weakly related to drop size, it is much more20

strongly dependent upon aerosol size. For example, Baklanov and Sørensen (2001)
and Andronache (2003) showed that below-cloud scavenging was dependent upon
aerosol size distribution, being important for very small (<0.01 µm) and coarse (>2 µm)
particles. Therefore, boundary-layer aerosol-size distribution can be modified by pre-
cipitation, with quick removal of coarse particles. A proper description of aerosol size25

distribution within precipitation scavenging parameterizations is therefore required to
estimate size-resolved PM concentrations.

Comparing the results from wet deposition schemes in different models is difficult
because of the complexity of the CWF models (e.g., spatial and temporal differences
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between forecasted cloud and precipitation, aerosol size and composition). Textor
et al. (2007) compared results from 16 global models participating in the AeroCom
project (Schulz et al., 2009) and found a large variability in the ability of models to
handle wet deposition. They had difficulty in identifying the reasons for the main dif-
ferences (e.g., the models did not provide the same indication about the type of rain;5

convective or stratiform precipitation) that was most efficient in removing aerosols from
the atmosphere. Ultimately, a reliable evaluation of different parameterizations for wet
deposition will only be obtained by implementing them within the same model, a task
that remains yet to be done.

4.6 Natural emissions10

Emissions can be broadly classified into natural and anthropogenic ones. Natural emis-
sions is a wide term that includes different compounds (e.g., NOx, SO2, NH3, PM, Non-
Methane Volatile Organic Compounds (NMVOC’s), CH4 and CO) emitted from sources
like vegetation, soils, animals, wetlands, sea salt, primary biological aerosol particles,
wind blown dust, volcanoes, lightning, forest fires, etc. Anthropogenic emission invento-15

ries are not addressed in detail in this study, but some challenges in their development
are discussed in Sect. 7.1.

Air pollutants from natural sources play a prominent role in the physics and chem-
istry of the atmosphere and also contribute to the ambient air concentrations of anthro-
pogenic air pollutants (e.g., O3, PM, SOA; Seinfeld and Pandis, 2006). For example,20

the organic compounds released in the atmosphere by vegetation, collectively referred
to as Biogenic Non-Methane Volatile Organic Compounds (BNMVOCs), contribute to
the formation of O3 (Curci et al., 2009; Wang et al., 2008; Bell and Ellis, 2004) and SOA
(Kleindienst et al., 2007; Kanakidou et al., 2005). Curci et al. (2009) simulated an aver-
age 5% increase in summer daily ozone maxima over Europe due to BNMVOC’s emis-25

sions with peaks over Portugal and the Mediterranean Region (+15%). BNMVOC’s
suppress the concentrations of the hydroxyl radical (OH), enhance the production of
peroxy (HO2 and RO2) radicals and generate organic nitrates that can sequester NOx
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and allow long-range transport of reactive N (Fehsenfeld et al., 1992).
The sea salt flux from the sea surface is an important factor in the formation of cloud

condensation nuclei (CCN) in the marine boundary layer (MBL), impact sea surface-
atmosphere exchange and heterogeneous chemistry, including the oxidation of SO2
and NO2 in the MBL (Foltescu et al., 2005; Pryor et al., 2001). In Europe, the con-5

tribution of mineral dust to PM10 concentrations varies from 10% to more than 30%
depending on location and season (Putaud et al., 2004) and, in the United States, the
fraction of mineral dust found in PM2.5 exceeds 10% in most areas and reaches 50%
in dry areas (Vautard et al., 2005; Malm et al., 2004).

Volcanoes release considerable fluxes of gases and particles to the atmosphere,10

both during eruptions and by long-term noneruptive degassing. Water, carbon dioxide,
and sulphur species represent by far the predominant component of volcanic gases. In
Europe, significant volcanic emissions have been to date limited to Italy and Iceland. An
extensive compilation of available, measured volcanic sulphur fluxes has been carried
out for the Global Emissions Inventory Activity (GEIA) (Andres and Kasgnoc, 1998).15

The data set contains volcanic SO2 emissions averaged over the twenty-five years
from the early 1970’s to 1997. It includes average SO2 emissions from 49 continuously
emitting volcanoes (four located in Europe: Etna, Stromboli, Vulcano and Kverkfjoll)
and maximum SO2 emissions from 25 sporadically emitting volcanoes (none located
in Europe).20

The gaseous and particulate natural emissions accounted for in the CWF systems,
as well as their calculation methodologies, are presented in Table 8.

4.6.1 Natural gaseous emissions

In most cases, the methodologies for the quantification of natural emissions require
input data like emission potentials based on measurements, meteorological data and25

land use data (e.g. land cover, leaf area index (LAI)) derived from satellite observations.
The estimated natural emissions are gridded data and have to be speciated according
to chemical mechanisms used by the photochemical grid models. In European scale,
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there are some studies focusing on the estimation of natural emissions and on their
impact on air quality (Simpson et al., 1999; NATAIR, 2007; Curci et al., 2009). However,
the uncertainties with regard to natural emissions are still very large (larger than those
of anthropogenic emissions).

Almost all CWF models use biogenic emissions (isoprene or/and monoterpenes5

or/and other volatile organic compounds (OVOCs) emissions from vegetation) in the
forecast runs. Biogenic emissions are mostly calculated with the use of emission mod-
els (MEGAN, BEIS3, AUTH-NKUA model, BIOEMI model) and modules or in a few
cases, they are taken from existing databases. The algorithms that are usually applied
are those introduced by Guenther et al. (1993, 1994, 1995) according to which iso-10

prene emissions are temperature and light dependent while monoterpenes and other
VOC emissions are temperature dependent. Additional processes relevant with the
emissions of biogenic compounds are described by some of the emission models like
BEIS3 that provides species-specific biogenic emissions factors that are adjusted for
the winter and LAI for each land use type to adjust the isoprene emissions for the15

effects of the Photosynthetically Active Radiation penetrating through the leaf canopy
or the AUTH-NKUA model that accounts for the light dependency of monoterpenes
emissions from some vegetation species.

MEGAN describes the variation of biogenic emissions as a function of numerous
environmental variables and factors (except for temperature and light) like leaf area20

index (LAI), humidity, the wind conditions within the canopy environment, the leaf
age and the soil moisture while it accounts also for the losses and productions in
the canopy. Emissions from soils, mainly nitric oxide as a function of soil tempera-
ture, land use and fertilizer input, are used as input data to only some of the CWF
models (ALADIN-CAMx, CAMx-AMWFG, FARM, MM5-CHIMERE, MOCAGE, RCG,25

SILAM, THOR, WRF/CHEM). Other gaseous natural emissions like those from volca-
noes, oceans and animals are hardly accounted for in the air quality forecast models
(only in CAMx-AMWFG, MOCAGE, SILAM and THOR). Lightning emissions of NOx
from the Global Emissions Inventory Activity (GEIA) database are used in the opera-
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tional runs of THOR model.

4.6.2 Natural particulate matter emissions

Some particulates occur naturally, originating from volcanoes, dust storms, forest and
grassland fires, living vegetation, and sea spray. In this section, we focus on primary
aerosol emissions, especially dust and sea salt particles, which constitute the largest5

contribution to total aerosol mass. Others are formed by way of the transformations of
pollutants such as sulfur dioxide, nitrogen oxides and ammonia into sulfates, nitrates
and ammonium, respectively (secondary aerosol). Many volatile organic compounds
are converted to oxidized organic species with low volatility, thus becoming a compo-
nent of ambient aerosol.10

FARM and MM5-CHIMERE use the methods proposed by Vautard et al. (2005) and
make use of a simplified bulk scheme for the calculation of mineral dust emissions
(cf. Table 8). Vautard et al. (2005) also propose a simplified scheme to calculate the
emissions which depend on turbulence near the ground because it is assumed that
the resuspension of material which is available on the ground can explain remaining15

contributions of missing parts of the PM10 average load. The desert dusts emission
fluxes mainly depend of wind velocity and on the surface features (Marticorena and
Bergametti, 1995). The emission modules account for the effects of the soil size dis-
tribution, surface roughness and soil moisture. The dust module developed by the
AM&WF (Atmospheric Modeling and Weather Forecasting Group, School of Physics,20

University of Athens, Athens, Greece) Group is used by SKIRON/Dust and CAMx-
AMWFG. The current model version incorporates state-of-the-art parameterizations of
all the major phases of the atmospheric dust lifecycle such as production, diffusion,
advection, and removal, including as well the effects of the particle size distribution on
aerosol dispersion and deposition. Different size bins can be considered with diame-25

ters ranging from 0.1–10 µm following a log-normal distribution (Zender et al., 2003).
During the model run, the prognostic atmospheric and hydrological conditions are used
in order to calculate the effective rates of the injected dust concentration based on the
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viscous/turbulent mixing, shear-free convection diffusion and soil moisture. The RCG
model uses the methods by Loosmore and Hunt (2000) and Claiborn (1998) to calcu-
late the resuspension of dust. MOCAGE has been coupled with a module of dynamic
source of dust emissions. According to Martet et al. (2009) it uses a size-resolved (bin)
approach.5

Sea spray droplets come in three varieties: film, jet, and spume. Film and jet droplets
derive from one process: air bubbles bursting at the sea surface. When a bubble
rises to the surface, its film-thin top eventually ruptures and ejects tens to hundreds
of film droplets with radii ranging roughly from 0.5 to 5 µm. After the bubble bursts, it
collapses and in so doing shoots up a jet of water from its bottom. Because of velocity10

differences along this jet, it soon breaks up into a few jet droplets with radii typically
from 3 to 50 µm, depending on the size of the bubble. Spume droplets derive from
another process: the wind tears them right off the wave crests. To estimate the sea
salt emissions it is essential to know the rate at which spray droplets of any given size
are produced at the sea surface (i.e., the sea-spray generation function) is essential.15

Spray droplets are the source of the local marine aerosol. LOTOS-EUROS, SILAM
and MM5-CHIMERE quantify the bubble- and spume-production mechanisms using
the approach of Monahan et al. (1986).

In SILAM, the aerosol-size distribution is extended to submicrometer particles ac-
cording to Martensson et al. (2003). RCG and CAMx-AMWFG also simulate the pro-20

cesses of sea-salt aerosol generation, diffusive transport, transformation, and removal
as a function of particle size (Gong et al., 1997). FARM and CAMx-AMWFG imple-
mented the methods proposed by Zhang et al. (2005b), which present a straightfor-
ward method to correct sea-salt-emission particle-size distributions according to local
relative humidity.25

In comparison with the main anthropogenic emission sources, the released amount
of pollen particles depends on numerous parameters that are related to meteorological
conditions. The emission modules for pollen therefore should include treatments, e.g.,
for the effects of the accumulated heat sums, start and end dates of the pollinating sea-
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son, the mean climatological rate of release, the correction functions related to wind,
temperature, humidity, and precipitation, and the diurnal cycle of the pollen production.
Pollen emissions are used as input emission data only in SILAM and Enviro-HIRLAM
forecast runs. For this reason, emission modules have been developed by FMI and
DMI. The most difficult problems in pollen-dispersion are to evaluate the emission flux5

of grains and their time evolution. According to Sofiev et al. (2006a), SILAM used in
the frame of trial forecasts during spring 2004 a “climatologic” emission term, which
was based on the results of long-term mean observed birch flowering dates. The sys-
tem is based on the European flowering start and duration maps from the International
Phenological Garden Project (IPG, 2004). The maps were compiled by Rötzer and10

Chmielewski (2001) using multilinear regression analysis of phenological observations
in Europe over 35 years (1961–1998).

Mahura et al. (2009) investigate the patterns of birch pollen counts over a diurnal
cycle and propose a parameterization that is useful for inclusion into operational and
research short- and long-term modeling with Enviro-HIRLAM for birch pollen atmo-15

spheric transport and deposition at different spatial scales. The evaluation of patterns
of diurnal cycles on monthly and interannual bases has been done based on analysis
of a 26 year time series of birch pollen counts from the Danish pollen measurement
site in Copenhagen. The suggested parameterization, based on a simple trigonomet-
ric function, includes dependencies on the time of birch pollen maximum and minimum20

occurrence on a diurnal cycle, averaged concentration at the end of the previous day,
and time shift.

Concerning the emissions from biomass burning and wild-land fires, THOR uses
the emission dataset of the EU project REanalysis of the TROpospheric chemical
composition over the past 40 years (RETRO). Sofiev et al. (2009) investigates the25

potential of two remotely sensed wild-land fire characteristics (4 µm brightness tem-
perature anomaly (TA) and fire radiative power (FRP)) for the needs of operational
chemical transport modelling and short-term forecasting of atmospheric composition
and air quality. The core of the methodology is based on empirical emission factors
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that are used to convert the observed temperature anomalies and fire radiative powers
into emission fluxes. In the paper a newgeneration fire assimilation system (FAS) is
presented, which evaluates globally the emission fluxes of primary particulate matter
originated from wild-land fires on a daily resolution. The predicted emissions in Europe
are subsequently scaled to other pollutants using emission factors from the literature5

and submitted to the chemical transport model SILAM for diagnostic assessment and
forecasting of the atmospheric composition.

4.7 Horizontal and vertical grid spacing

In this article, we distinguish between grid spacing and resolution of the CWF models
(Pielke, 1991, 2001; Laprise, 1992; Grasso, 2000a,b). Grid spacing can be simply10

defined as the distance between numerical grid points; however, resolution can in many
cases be an ambiguous or poorly defined concept. Resolution commonly refers to the
spatial or temporal scale, on which various phenomena can be resolved by the model
or modelling system. However, for instance the minimum distance scale, on which
phenomena can be resolved, may vary from two to ten times of the grid spacing. The15

resolution (or grid spacing) can also be different for the emission data, meteorological
data, land use data, other input data, the computational grid of the model, the receptor
grid of the model, and other data. It is therefore not always clear what is meant with the
overall resolution of the modelling system, and how it has been validated for a specified
phenomenon. Therefore, whenever possible we prefer to use the more precise term20

grid spacing.
A summary of the grid spacings and coordinate systems of the different models ap-

pear in Table 9. Clearly, CWF models can be implemented with various horizontal and
vertical grid spacings, depending upon the atmospheric scales to be modeled. Compu-
tational time limitations of having forecasts appear in real-time during operational fore-25

casts restrict the domain size and grid spacing. Modelling on the continental, regional,
and background urban scales necessarily require different horizontal grid spacings. For
example, a CWF model for forecasting regional or municipal air quality requires small
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horizontal grid spacing (e.g., of the order of from 1 to 20 km), but does not necessarily
require model levels in the stratosphere. In contrast, continental-scale models typi-
cally have 10–50 km horizontal grid spacing and should in many applications include
treatments at least for the entire troposphere and the lower stratosphere. Clearly, the
selection of the appropriate grid spacing depends upon the details of the modelling5

system and the particular application.
Most of the models described in this paper use multiple grids that may have dif-

ferent horizontal grid spacings for the meteorological and air quality components (for
the offline models). In that way, the CWF models may cover the continental and re-
gional scale across Europe and, with the finer grids (sometimes nested), they may10

focus on a more detailed forecast of a specific region. For instance, the modelers
used in 2010 coarse grids covering Europe with horizontal grid spacings in the range
of 20 km (SILAM), 25 km (CAMx-AMWFG, RCG, SKIRON/Dust, EURAD-RIU), 30 km
(ALADIN-CAMx, MM5-CAMx), 44 km (MATCH-HIRLAM) and 50 km (LOTOS-EUROS,
MATCH-ECMWF, MM5-CHIMERE, MM5-CMAQ, MOCAGE, THOR, WRF-CHEM).15

For the finer-grid forecast simulations, the variety of horizontal grid spacing in 2010
ranged from 2 km (MM5-CAMx for Athens area, MOCAGE over France at 2.5 km) to
27 km (MM5-CMAQ for the Iberian Peninsula) for the 3-D Eulerian models. Many mod-
els use 10–12 km horizontal grid spacing for their finer grids (MM5-CAMx for the Balkan
region, MM5-CHIMERE for Portugal, MOCAGE for France and WRF/CMAQ) and 5 km20

(Enviro-HIRLAM, EURAD-RIU and SILAM for Northern Europe). The other applied
horizontal grid spacing is 9.6 km for ALADIN-CAMx covering Austria, 12 km for FARM
(Italian Peninsula), 25 km×12 km for LOTOS-EUROS (covering the Netherlands) and
17 km for THOR.

Except for the grid spacing, another parameter that differs among models and appli-25

cations is the selection of the coordinate system. Horizontal spatial coordinates may
be expressed in polar coordinates on a sphere, Cartesian coordinates on a plane, or
one of several projections of a sphere onto a plane. Curvilinear coordinates may be
used in both polar and planar instances, where the model refers to a pseudo-longitude
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and latitude, that is then mapped to geographic longitude and latitude (following the
curved surface of the earth).

Following the Cartesian map projections (fixed physical distance coordinates on a flat
plane), a number of models included in this paper use the Lambert Conic Confor-
mal coordinate system (ALADIN-CAMx, MM5-CAMx, MM5-CMAQ, WRF/CHEM and5

WRF-CMAQ) for the forecasting applications. Another Cartesian map projection is the
Universal Transverse Mercator (FARM). A rotated longitude–latitude grid is used by
Enviro-HIRLAM model, and a curvilinear geodetic latitude-longitude projection is used
by CAMx-AMWFG and LOTOS-EUROS. In all geographic projections, the surface of
the Earth is distorted since the Earth’s actual shape is irregular. Nevertheless, all pro-10

jections produce similar results and most of the models allow the user to select the
map projection among different options.

The models also have different vertical coordinate systems describing how the grid
levels are separated in the vertical: height, terrain-following sigma, pressure, and step-
mountain coordinates. LOTOS-EURO uses a dynamic mixing layer coordinate system15

with four layers (a surface layer of 25 m, mixing layer height, and two reservoir layers up
to 3.5 or 5 km). RCG also uses a dynamic mixing layer coordinate system with surface
level, 25 m surface layer, mixing layer and two reservoir layers up to 4 km. Uniformity
appears on the selection of the surface layer, where most of the models use 20–50 m
above the surface as the first model level. Also, most of the models are focused on the20

troposphere with the top layers located at 2.5–15 km, with three exceptions at 22 km
(SKIRON/Dust), 500 hPa (∼5.5 km, MM5-CHIMERE) and 1 hPa (∼50 km, MOCAGE).

5 Sensitivity analysis and evaluation of CWF models

In order to develop and improve CWF models, different approaches can be employed
to test their validity. In this section, we explore some of those approaches through25

sensitivity analysis (Sect. 5.1), individual model evaluation studies (Sect. 5.2), and
multiple-models evaluation studies (Sect. 5.3); all of these are summarized in Sect. 5.4.
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Aiming to better comprehend the common evaluation procedures for operational
CWF models, each individual model described here was overviewed regarding its eval-
uation practices. A short description of each individual model evaluation for the CWF’s
is presented in Table 10.

5.1 Sensitivity analysis5

Sensitivity analysis is defined as the study of the variation in model output resulting
from the variation in the model inputs. Sensitivity analysis quantifies the relative con-
tributions of the input factors for the model output. This gives information on the input
factors that are mainly responsible for the output uncertainties.

Sensitivity information from CWF models can be useful in various applications, such10

as the design of optimal pollution control strategies, inverse modelling, model parame-
ter estimation, source apportionment and data assimilation. Uncertainty and sensitiv-
ity analysis are playing a crucial role to understand the relative importance of different
processes in the atmosphere and to quantify the impact (either singular or with interac-
tions) of uncertain inputs (e.g., data, parameterizations) in the results. The applications15

of the sensitivity analysis techniques include, for instance, the role of emissions, chem-
ical kinetics, boundary conditions and parameterizations of vertical diffusion.

In recent years, an increasing number of CWF models have been reported to pro-
vide information on their sensitivity with respect to various input parameters. Sensitivity
analysis attempts to apportion quantitatively the variation in the modeled concentra-20

tions to different sources of the variation. This is accomplished through either a statisti-
cal or deterministic approach. In the statistical approach, the model is executed several
times, each time with slightly perturbed inputs and the sensitivity is estimated from the
statistical properties of the multiple output variability. In the deterministic approach, the
model output equations are differentiated with respect to its inputs and the sensitivity25

is calculated simultaneously with the concentration fields through an auxiliary set of
equations.
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Deterministic sensitivity analysis techniques propagate the derivatives either forward
or backward along the model trajectories. In the forward method, the uncertain inputs
are perturbed and these perturbations are propagated forward through the modelling
domain at future times, providing sensitivity information at all receptors with respect to
a few uncertain parameters (direct sensitivities). Technically, this can be accomplished5

using either additional differential equations or by inserting additional lines of code in
the model that calculate at each point the gradient of the output function. In the back-
ward (adjoint) method, the perturbation is made at the receptor end and is propagated
backward in time and space, providing sensitivity information about specific receptors
with respect to all sources and parameters.10

Implementation of adjoint sensitivities in CWF models is increasing, mainly because
of their application in chemical data assimilation. For example, in 2010, the WRF-
Chem adjoint has been under development, and will include both the adjoints of both
the transport and chemistry schemes. As a starting point, the existing adjoint of the
meteorological WRF model has been examined for compatibility with the current WRF-15

Chem version with the goal of developing an adjoint for WRF-Chem to treat initially
chemical tracers and aerosols. The adjoint CWF models are reviewed in Table 13;
for these models also deterministic adjoint sensitivity analysis modules can be imple-
mented.

The direct and adjoint methods are included under the deterministic approach of sen-20

sitivity analysis. The statistical approach has limited applications in three-dimensional
CWF models, due to its high computational requirements and its restrictions on the
statistical distribution of uncertain inputs. Ensemble prediction appears to be a better
framework to deal with those restrictions, as it can provide information both about the
forecast uncertainty and the ensemble sensitivity, using a mixture of formal statistical25

treatments and an informal treatment on some parts of the modelling cascade.
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5.2 Model evaluation

Before using a CWF model as an operational tool, one should ensure that the scientific
evaluations, as well as all the other evaluation steps, have been critically performed.
Clearly, the CWF models need to be properly evaluated also before their predictions
can be used in any other context with confidence. It is therefore fundamental to as-5

sess whether the model is properly simulating the spatial and temporal features on the
scales resolved by the model, and also to assess whether the physical and chemical
processes are simulated correctly in the model, leading to proper model response to
changes in meteorology and emissions.

The main goal of a forecast model evaluation exercise is to demonstrate that the10

model is making reasonable predictions, when compared with observations, taking
into account the adequacy and correctness of the science represented in the model for
the purposes, for which the model is applied (e.g., Britter et al., 1995). Evaluation ex-
ercises are usually based on the analysis of the systematic biases and errors in model
outcomes, but should also indicate sensitivities and uncertainties in the atmospheric15

processes simulated within the model. The results of these exercises should lead to
new directions in model development and improvement, as well as point to the need
for additional measurements.

Several studies have discussed the evaluation of CWF models and the importance
of improved characterization of model uncertainties (e.g., Hanna and Gifford, 1971;20

Fox, 1984; Demerjian, 1985; Borrego et al., 2008, Schlüenzen et al., 2010), and sug-
gestions for model evaluation methods have been provided (e.g., Venkatram, 1979,
1988; Weil et al., 1992; Dabberdt et al., 2004). Within the scope of COST 728 activi-
ties, Schlüenzen and Sokhi (2008) and Schlüenzen et al. (2010) suggested a generic
evaluation protocol that divides the evaluation of models into (i) general, (ii) scientific,25

(iii) benchmark testing and iv) operational. Of these four approaches to evaluation, the
first three should be performed by the model developer and the last one by the model
user. Clearly, model evaluations can be classified in several ways, one possibility is:

6054

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/5985/2011/acpd-11-5985-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/5985/2011/acpd-11-5985-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 5985–6162, 2011

Operational, regional-
scale, chemical

weather forecasting
models in Europe

J. Kukkonen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

(i) operational (ii) diagnostic, (iii) dynamic and iv) probabilistic.
In the first step, commonly referred to as operational evaluation, model predictions

are compared to observed data and some statistical measures are computed to gauge
overall model performance. This evaluation against data determines the degree to
which a model does an accurate prediction of the real world from the perspective of5

the intended uses of the model. Schlunzen et al. (2010) present an overview of the
most common statistical parameters used to indicate the ability of the model to pre-
dict the tendency of observed values, errors on the simulation of average and peak
observed values, and the type of errors (systematic or unsystematic). According to
Weil et al. (1992) and Hanna et al. (1993), in general, in the early 1990’s there were10

three performance measures that were regularly applied in CWF model evaluation –
the mean bias, the root mean square error, and the correlation. Currently, a more ex-
tensive collection of statistical measures is commonly used. In particular, operational
evaluation should include a calculation of the statistical confidence levels.

In the next step (diagnostic and dynamic evaluation), the objective is to address15

whether the predicted concentrations stem from correct or incorrectly modelled pro-
cesses, whether they be physical or chemical. This evaluation step determines whether
the model implementation accurately represents the developer’s conceptual description
of the model and the solution to the model. These evaluation methods can cover a wide
variety of evaluation studies that consider the physical, chemical, meteorological and20

emission processes.
Finally, model evaluation can include a third step, or probabilistic evaluation, which

attempts to capture the uncertainty or level of confidence in model results for air quality
forecasting applications. Many methods exist to estimate the uncertainty: ensemble
runs, direct calculation of variances in predicted concentrations, Monte Carlo runs, and25

analytical error-propagation methods for simple-model algorithms. This probabilistic
model evaluation should allow quantification of the confidence in model-predicted val-
ues and determination of how observed concentrations compare within an uncertainty
range of model predictions. Sensitivity tests are one of the most common and tradi-
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tional ways to ascertain whether inputs have a notable influence on model performance
issues. A structured intercomparison among models can also be a useful method to
indicate whether a general consensus exists among the models or whether there are
outliers.

Because all model systems described in this article are based on a NWP model5

and on a chemistry-transport model, a two-stage validation procedure (in which the
weather forecast is independent of the chemistry model) is often the common model
evaluation strategy. As a large experience with NWP verification already exists, a few
general principles can be summarized in the following:

– No single verification statistic (e.g., false alarm ratio, probability of detection, root-10

mean-square error) is capable of presenting a complete picture of the verification
statistics,

– Verifying higher-resolution forecasts will necessarily result in a relatively worse
verification relative to lower-resolution forecasts using most of the statistical pa-
rameters (e.g., Roebber et al., 2004), and15

– Statistical significance of errors should be evaluated and spatial fields should be
tested for field significance (e.g., Livezey and Chen, 1983; Elmore et al., 2006).

The classification was defined according to the level of development, and five levels
were identified (http://pandora.meng.auth.gr/mds/long help.php), as follows:

1. High level of model evaluation and uncertainty analysis: this level of evaluation20

is hard to achieve because of either still pending work on evaluation, or minor
limitations in the measurements available (quality, representativeness, coverage
etc.), or both,

2. Diagnostic and dynamical model evaluation: extensive and good model evaluation
has been performed, but still uncertainties because of major limitations in the25

measured data,
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3. Limited model evaluation: considerable uncertainties because of both lack of
measurements and an inadequate evaluation procedure,

4. Only first attempts towards evaluation and

5. No evaluation at all.

5.3 Multi-model evaluation studies5

Model evaluation studies also offer the chance to see the weaknesses in the mod-
els and thereby lead to efficient improvement. Although all the CWF models con-
sidered have been evaluated individually by comparison to observations (Table 10),
multi-model evaluation projects can tackle some of the problems more effectively, and
in many cases more cost-effectively.10

Validation against field experiments includes e.g. ETEX (European Tracer EXper-
iment, http://rem.jrc.ec.europa.eu/etex/) and Kincaid (Atanassov, 2004) data. Past
evaluation projects involving models in this article include: EuroDelta (http://eurodelta.
pangaea.de/), CityDelta (Cuvelier et al., 2007, http://aqm.jrc.ec.europa.eu/citydelta/),
ESCOMPTE (Expérience sur Site pour COntraindre les Modèles de Pollution atmo-15

sphérique et de Transport d’Emissions; http://escompte.mediasfrance.org), ESQUIF
(Etude et Simulation de la QUalité de l’air en Ile de France, a synthesis of the Air Pol-
lution Over the Paris Region, Vautard et al., 2003), and the EU ENSEMBLE project
(http://ensembles-eu.metoffice.com/). Three of these projects are described below:
EuroDelta, CityDelta and ESCOMPTE. These three model intercomparison projects20

were selected, as they compare several CWF models, including many of those de-
scribed in this article.

5.3.1 EuroDelta

The EuroDelta experiment was designed to evaluate air-quality improvement at the
European scale in response to regional emission reduction scenarios for 2020. Within25
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the framework of EuroDelta, van Loon et al. (2007) studied the long-term ozone sim-
ulations from seven regional air-quality models: CHIMERE, DEHM, Unified EMEP
model, LOTOS-EUROS, MATCH, RCG and TM5; the latter is global chemistry Trans-
port Model, not included to this article. All models, except TM5, are regional-scale,
limited-area models designed for short-term and long-term simulations of oxidant and5

aerosol formation. They intercompared the models and compared their output to ozone
measurements. All modeling groups adapted the same annual emission inventory of
ozone and Ox to their model grid and model species.

Most of the models in EuroDelta realistically reproduced the observed ozone diurnal
cycle, the daily averages, and the variability in the daily maxima. Except for TM510

and DEHM, daytime ozone concentrations were overestimated. LOTOS-EUROS and
RCG had a more-pronounced diurnal cycle than observed, whereas TM5 had a less-
pronounced diurnal cycle. CHIMERE had a large positive bias in ozone concentration,
which probably resulted from a bias in the boundary conditions. The other models and
the “ensemble model”, whose concentrations are the average of the concentrations15

from all seven models, accurately represented the diurnal cycle. In general, the daily
maxima in ozone concentrations were better simulated than the daily averages, and
summertime concentrations were better simulated than wintertime concentrations (van
Loon et al., 2007).

5.3.2 CityDelta20

The CityDelta project was designed to evaluate the air-quality response of several
emission abatement scenarios for 2010 at the scale of the European continent, and
specifically in cities. CityDelta (Cuvelier et al., 2007) proceeded in two stages. In the
first stage, 15 modeling groups participated in the project, with more than 40 model
configurations of various complexities. Participants were asked to perform a one-year25

control scenario simulation for PM and a 6-month simulation for ozone for six European
cities (Berlin, Katowice, London, Milan, Paris and Prague). Since most of the additional
costs of this project were not centrally funded, many groups offered several simulations
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on one or a few cities, sometimes all six. A second stage has been devoted particularly
to the analysis of PM modeling, with a smaller number of modeling teams participating
(Vautard et al., 2007; Thunis et al., 2007).

Within the second stage of CityDelta, Vautard et al. (2007) used the predictions of six
models (CAMx, CHIMERE, EMEP, LOTOS, OFIS (not included in this article), and REM5

(RCG) (not included in this article)) to simulate a full year (1999) of ozone and PM10,
encompassing a minimal model simulation domain of 300 km×300 km around four
cities: Berlin, Milan, Paris and Prague. Three models (CHIMERE, LOTOS, REM(RCG))
were used both at large-scale (typically 50 km) and small-scale grid spacing (5 km).

These models captured fairly well the mean, daily maxima and variability of ozone10

concentrations, as well as the time variability of the ozone response to emission sce-
narios for each city and the spatial variability between cities. However, the large-scale
models overestimated the ozone concentration in the city centres. The PM10 simula-
tion skill was generally poor, and the large-scale models underestimated the mass of
PM10. All models had difficulties in capturing the observed seasonal variations. The15

fine scale models show higher PM10 and lower ozone concentrations in urban areas,
which are closer to the observations than the corresponding values predicted by the
larger-scale models.

5.3.3 ESCOMPTE

The European campaign ESCOMPTE documented four photochemical episodes, last-20

ing 3–4 days each, near Marseilles in South-East France during June and July of 2001.
These days corresponded to about 30% of the ozone pollution days (120 ppbv) in
this region in 2001. The main objectives of the field campaign were to analyze and
document several photochemical episodes in this area, as well as to create a de-
tailed chemical and meteorological database for testing and evaluation of regional-25

scale CTM’s. Aerosol measurements were also carried out during ESCOMPTE.
The cooperative experimental project was open to all research groups. The objec-
tive of ESCOMPTE was not to rank modeling systems according to specific sta-
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tistical performance, but rather to provide a convenient and comprehensive bench-
mark to evaluate models or the performance of different versions of the models
(http://escompte.mediasfrance.org/exercice/HTML/overview.html).

Coll et al. (2007) used the data from the ESCOMPTE campaign, focused on the
simulation of two intense ozone episodes: those on 21–23 June 2001 (characterized5

by moderate synoptic wind) and 24–26 June 2001 (characterized by local land–sea
breeze circulation). They used the predictions of two models, CAMx (ENVIRON, 2003)
and CHIMERE (Vautard et al., 2005), having their own initial configurations, and then
switching their meteorological fields and chemical boundary conditions. The domain
was characterized by the presence of large urban and industrial centres along the10

coastline, and a dense road network. A statistical comparison of the model outputs
was conducted over the whole set of model configurations.

The results of all the model configurations were examined in order to determine, how
much the changes in dynamical and chemical input data affect the models outputs, try-
ing to discriminate between the influence of internal and external configuration choices.15

One conclusion of Coll et al. (2007) was that ozone plumes are strongly influenced by
the modelled representation of the wind circulation, even when using similar dynami-
cal modules, based on the same types of parameterizations. Indeed, although ozone
production rates along the day were mostly emission dependent, the structure of the
ozone plume over the domain was completely driven by wind fields. The meteorolog-20

ical module is therefore a critical choice in modeling air quality in coastal areas (Coll
et al., 2007).

6 User Operations

This section provides an overview of how the user interacts with the different models
to produce the operational forecasts. Section 6.1 discusses the availability, documen-25

tation and user interfaces of the different models and the computer requirements, and
lists the levels of documentation. Section 6.2 discusses how the output is dissem-
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inated. A summary of the availability, user communities, and documentation of the
various CWF systems is presented in Table 11.

6.1 Model availability and documentation

The availability of CWF models, and more specifically their source code and docu-
mentation, may be described in terms of software availability, and their use may be5

categorized in a similar way. On this basis, many of the models are provided as
free and open-source environmental software (Karatzas and Masouras, 2004), such
as CAMx, CHIMERE, MM5, SILAM and WRF-Chem. In contrast, other models are
not publicly available or are otherwise restricted in some way, such as ALADIN, EU-
RAD, FARM, MATCH, MOCAGE, NAME, OPANA, SKIRON/Dust and THOR. There are10

also models that combine public and restricted source codes, such as CAMx-AMWFG,
Enviro-HIRLAM and MM5-CHIMERE.

The terms of use for those models that are not freely available are not identical for all
categories of users; research institutes are usually not charged for their use, although
this may not be the case for commercial applications. In addition, model availability15

options may also exist, as in the case of free access being limited to institutes partici-
pating in a specific consortium, or in the case of a distinction between the operational
version and the research version. Some models may have well-organized and regularly
updated web sites, including documentation on model applications, validation and user
communities. In contrast, others suffer from poor or partly incomplete documentation.20

There is an on-line database for CWF models that provides various search facilities
and a structured, homogenized way for model information provision, the Model Docu-
mentation System (MDS). This system has been available via the European Environ-
ment Agency for the last ten years (http://pandora.meng.auth.gr/mds/mds.php, Mous-
siopoulos et al., 2000). Another internet-based system of model properties is in the25

joint COST 728 and COST 732 Model Inventory, accessible at http://www.cost728.org
(Schluenzen and Sokhi, 2008).
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Because CWF models are computationally intensive, they are not usually prepared
as a software product ready to be installed and executed. To work on the application
and use of a CWF model, various software tools may be used that commonly ac-
company the source code and are usually described in the model documentation. Few
model packages have dedicated user interfaces that allow for the automatic installation,5

set-up and use of the model. Commonly, command-line scripts (usually shell scripts)
and compilers are required to produce an operational executable. In addition, using
CWF models requires software tools for the preprocessing (e.g., input data prepara-
tion, formatting, autofeeding), as well as post-processing (e.g., model visualization) of
model output of data.10

6.2 Users of CWF model results and information dissemination

CWF model users are usually scientists, who set-up and execute the model for opera-
tional or research uses and produce model results. However, CWF model results are
of interest also for many other categories of users. The reason for that may be traced
to the environmental regulatory and legal framework, and the resulting mandate for15

improved air-quality management.
In Europe, CWF has been regulated via a number of Directives that define the quan-

titative thresholds to be applied to address air-pollution problems. The latest update
of this legal framework is related to the adoption of the “Clean Air for Europe” Direc-
tive 2008/50/EC, which states that “Member States shall ensure that timely information20

about actual or predicted exceedance of alert thresholds, and any information thresh-
old is provided to the public”. On this basis, a set of CWF goals is defined, that include
the geographical area of expected exceedance of an air-quality threshold, the expected
changes in pollution (such as improvement, stabilization or deterioration), and the rea-
sons for those changes.25

Moreover, the same directive states that “it is necessary to adapt procedures for data
provision, assessment and reporting of air quality to enable electronic means and the
Internet to be used as the main tools to make information available”. This means that
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it is necessary to develop operational air-quality management and citizen notification
systems that will make use of modern information and communication technologies
and will allow for the early forecasting of air pollution levels (Karatzas, 2010). This
means that environmental authorities are required to operate systems that will include
operational CWF models, and would allow them to estimate the spatial and temporal5

occurrence of air pollution, in advance of any actual incidents, and thus notify citizens,
as well as other interested parties.

The users of CWF model results may be defined with the aid of the air-quality infor-
mation provision requirements of the 2008/50 EC Directive, as well as from common
practice (e.g., Fedra and Witner, 2009; Slørdal et al., 2008; Karatzas and Nikolaou,10

2009). These users include the following.

6.2.1 Industry and business activities

The main interest of these users is to forecast the impact of industrial emissions from
installations such as power plants, oil company distilleries, etc. As these users are
interested primarily in the results of CWF models, it is easier for them to commission15

these forecasts as a service rather than having to install and maintain the modeling
system themselves.

An example of the use of CWF model results for this user category is the assessment
of air quality in an industrial area, where the spatial scale may be in the order of tenths
to hundreds of kilometers, and the temporal scale in the order of days, or years when it20

comes to producing forecasts for future scenarios. Thus, as an example, in the case of
a multi-source industrial complex (various point sources – chimneys with various emis-
sion rates and emitting substances), the MM5-CMAQ air quality management system
may be applied (San José et al., 2006, 2008a,b). Due to the computational demand of
such problems, a computer cluster or a multi-processor machine are among the most25

appropriate hardware set-ups to be selected, where the models are prepared to be run
in parallel, handling different emission scenarios.
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In the above mentioned applications, the service provider usually prepares the soft-
ware for managing the simulations, the software required for the pre-processing of
the input data and the post-processing of the results, as well as the necessary web-
based interfaces for the client. Such systems provide, e.g., decision-making support
for clients, who need to decide whether to switch off some emission sources, usually5

within the next 24 h, to avoid an air-quality episode.

6.2.2 The environment decision and policy makers

Those are the ones that are responsible for making decisions concerning air-quality
abatement measures as well as for managing air-quality status and dealing with prob-
lems on a local to regional scale. An important category of users is city authorities.10

Clearly, the city authorities are interested in the capability of the modeling system to
forecast all the parameters that are required by the relevant regulatory framework,
and also on the accuracy and accountability of the information that is being produced.
In both cases, information dissemination is usually based on the automatic (or semi-
automatic) preparation of tables and graphs, providing estimates of concentrations,15

their spatial and temporal evolution, as well as scenario-based estimates of the emis-
sions or meteorology.

Designing and predicting forecast-based scenarios is important for decision making,
as it allows authorities to take preventive measures to avoid an air-quality episode or
reduce the duration or spatial scale of a forecasted episode, in accordance to the man-20

dates of the 2008/50/EC Directive. Originally, many city authorities had maintained and
operated their own operational CWF modeling systems. However, due to the increased
complexity of the latest versions of such systems and the capacity required in terms of
experienced personnel and hardware, the tendency now is to hire such services from
partners like institutes, universities or private companies that are active in this area, or25

to install the system locally and contract with consultants for services, upgrades, and
maintenance.
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6.2.3 The CWF scientific community

This is a community with a strong interest in the science and the understanding of
CWF phenomena and problems. This community requires detailed information, which
is usually of little or no interest to the other user communities, and include model perfor-
mance indicators, model improvements, and environmental decision-making analysis5

data. Nevertheless, in most cases, the detailed results of the operational CWF model
calculations are not made available to anyone else outside the group that has devel-
oped and is maintaining the CWF modeling system.

6.2.4 The general public

These are the citizens, usually inhabitants of the area covered by the operational CWF10

models, as well as people living outside the specific area, who nevertheless are inter-
ested in the air-pollution levels, usually near the area where they live or work. For these
users, CWF models are combined with air-quality information systems, that make use
of complementary push–pull communication channels (Karatzas et al., 2005; Karatzas,
2007; Karatzas and Nikolaou, 2009; Zhu et al., 2009).15

The dissemination of the air-quality information to the general public is usually in the
form of air-quality indexes, graphical representations of air-pollution levels, text descrip-
tions, and multimedia. The means of dissemination are quite variable, including mass
media, Internet personalized SMS (short message system) messages, voice servers,
and street panels. These characteristics have also resulted from the analysis of a set20

of air-quality information dissemination systems that was conducted under COST Ac-
tion ES0602 (www.chemicalweather.eu; Kukkonen et al., 2009a). This COST Action
inventoried the way that air-quality information was disseminated to the public by an-
alyzing data from 93 air-quality information systems, originated from seven European
countries (Karatzas and Kukkonen, 2009).25
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The air-quality information systems that were screened were divided into two types:

1. Those that materialize air quality (AQ) information dissemination from observa-
tional data. In many of the systems analyzed, air-quality observations are pro-
vided to the public on the basis of hourly data. In some cases, this info is made
available in near real time (with a time lag of 1–2 h), while in other cases this in-5

formation is provided for the previous day, or up to the last period, for which data
have been validated.

2. Those that disseminate AQ information based on operational CWF model fore-
casts. However, in many of the AQ Information systems investigated, no CWF
models were applied. This suggests that the CWF modeling community needs10

to apply models, not only for regulatory purposes, but also for producing infor-
mation for all three categories of users. In the cases where CWF models were
applied, these were mostly three-dimensional models, although statistical models
and computational-intelligence models were also employed. In some cases, hu-
man judgment is applied to estimate the quality of the atmospheric environment15

for those systems that have no CWF model support, whereas in some cases both
human expertise and models are used.

6.3 Dissemination of forecasts on Internet

To investigate the basic characteristics of operational CWF modeling systems, an anal-
ysis was made based on the systems that are currently included in the European Open20

Access Chemical Weather Forecasting Portal, materialized in the frame of COST Ac-
tion ES0602 (Balk et al., 2010; available at http://www.chemicalweather.eu/Domains
and registered as a GEOSS service in 2010). This portal provides access to avail-
able CWF systems in Europe in a user-friendly graphical format. The portal currently
includes about 20 operational CWF modeling systems from all over Europe, cover-25

ing local to regional and continental scales of AQ. The basic characteristics of these
systems are summarized in Table 12.
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In all studied systems, users only had to make one or two selections to obtain the
information (in terms of graphs or maps). Many systems do not archive forecasts,
whereas others archived information for the last two days or two months, and others
archived years of data.

The Internet is the most popular way to disseminate output from operational CWF5

models. For the models in the European Open Access CWF Portal, many provide
output in the form of concentration fields, usually superimposed on maps of the area
of interest.

7 Emerging areas and future challenges

The aim of this section is to highlight selected emerging scientific areas, as well as10

future challenges that would be expected to lead to improving the reliability of chem-
ical weather forecasts. These topics include emission and chemistry uncertainties
(Sect. 7.1), integration of NWP and ACT models (Sect. 7.2), boundary conditions
(Sect. 7.3), assimilating chemical data into the models (Sect. 7.4), improved under-
standing and parameterization of physical processes (Sect. 7.5), evaluation of CWF15

models against data (Sect. 7.6) and generation of model ensembles (Sect. 7.7).

7.1 Emission inventories and modelling, and chemical modelling

The evaluation of emissions is one of the main sources of the uncertainties in the
predictions of the CWF models. In this section, we address the research challenges
both in terms of the pollutants and source categories, and in terms of how various20

emission inventories should be refined and harmonised.

6067

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/5985/2011/acpd-11-5985-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/5985/2011/acpd-11-5985-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 5985–6162, 2011

Operational, regional-
scale, chemical

weather forecasting
models in Europe

J. Kukkonen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

7.1.1 Research challenges of emission inventories of species and source
categories

Improvement is required especially for the emission inventories of aerosols and organic
species. Most of the regional emission inventories currently consider PM10 and PM2.5;
however, primary aerosol emissions need to be further specified in terms of the aerosol5

size distributions, chemical composition and source origins. In particular, particulate
black carbon and organic carbon should be specified. Natural emissions of PM – for
example, duststorms in arid or semi-arid areas, wild-land fires (e.g., Saarikoski et al.,
2007; Sofiev et al., 2009; Saarnio et al., 2010) and sea-spray – are emerging areas of
further research. In particular, information is scarce regarding the size distribution of10

particulate matter formed from natural dust sources and the temporal variability of dust
emissions.

Substantial progress has recently been achieved in the representation of processes
controlling biogenic VOC emissions (Monks et al., 2009). However, biogenic VOC
inventories still need improved quantification by species type (e.g., isoprene) and in-15

creased number of species in inventories. Information on the emissions of residential
and other small-scale combustion is scarce, although its influence on the exposure of
the population may be substantial in some countries and regions (e.g., Karvosenoja
et al., 2008, 2010; Denby et al., 2010).

Major uncertainties remain for emissions from transport, including emissions from20

shipping and aviation, and on the vehicular non-exhaust emissions. For example, not
all emission inventories consider ship emissions, which can be important to air pol-
lution in coastal areas (e.g., Jalkanen et al., 2009). Also, uncertainties remain in the
modelling of emissions that are dependent upon meteorology, such as allergenic pollen
(e.g., Sofiev et al., 2006b, 2011; Veriankaitë et al., 2010) and dust.25
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7.1.2 Research challenges on harmonisation of emission inventories

The lack of harmonisation of emission inventories at European and national levels is
one of the main obstacles to the quantitative comparison of the predictions of opera-
tional CWF systems. Currently, the horizontal grid spacing of the emission inventories
can be reasonably accurate for regional CWF systems (e.g., the grid spacing for the5

pan-European domain is 6 km×7 km in the emission inventory within the MEGAPOLI
project). However, the temporal variability of emissions and the vertical distribution of
the heights of the emission sources are not considered accurate in all cases, and these
aspects of the emission inventories need to be improved.

Further work is also needed to improve the relationships between global, regional10

and local inventories, especially for developing countries and urban areas. Global
emission inventories (e.g., EDGAR, Emission Database for Global Atmospheric Re-
search; IPCC/IIASA and Intergovernmental Panel on Climate Change/International In-
stitute of Applied System Analysis) result in major uncertainties for the total emissions
of individual major cities. For example, non-methane hydrocarbon emissions for Lon-15

don as specified by the various available inventories differ by about 65%; for Moscow
and Paris, they differ by almost a factor of three (Gurjar et al., 2008). Even for NOx
emissions, the emissions for Paris differ about by a factor of 2.5 and for Moscow more
than 60% (Gurjar et al., 2008).

The global emission inventories commonly underestimate the urban emissions in20

comparison with national and municipality databases, as is the case, e.g., for the Lon-
don Atmospheric Emission Inventory database (LAEI, 2009). A quantitative analysis
of such differences is therefore needed, and more accurate emission inventories are
required on regional and city levels. The first step in this direction was taken within the
European CityDelta project (Sect. 5.3.2; Cuvelier et al., 2007). Within the MEGAPOLI25

project, a new emission inventory has been developed for Europe and the world, with
downscaling to urban areas at a horizontal grid spacing of down to 1 km (van der Gon
et al., 2009).
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7.1.3 Research challenges on the temporal variation and satellite observations
in emission modelling

Because CWF models typically use emission inputs with data every hour, emission
models are used for characterization of daily, weekly, monthly and yearly cycles of
sources or their categories. For anthropogenic sources, these models are usually static5

and simple. Typically, multiplicative coefficients are used to calculate proportions of the
total annual emissions appropriate for a given month, weekday and hour. The next
generation of dynamic anthropogenic emission models could take inspiration from en-
ergy consumption models, which take into account meteorological variables, especially
ambient temperature, cloudiness and wind speed. For combustion, which is one of the10

key emission sectors, this parallel is obvious.
Satellite instruments (e.g., OMI, GOME-2, MODIS, MOPITT) provide new opportuni-

ties for verification and data-driven estimates of emissions. Burrows and Borrell (2009)
provide an overview of different instruments. Standard approaching to analyzing satel-
lite data often involve comparing long-term averages of satellite-retrieved columns with15

simulated columns based on a CWF model. This approach can also be used to val-
idate emission inventories. Another approach is to estimate the long-term trends in
emissions is the so-called analog approach where trends in observed columns are
compared to trends based on inventories (e.g., Konovalov et al., 2008). Adjoint (i.e.,
inverse) dispersion modelling can also be used to evaluate the emissions, or the sen-20

sitivities of concentrations with respect to changes in emissions (e.g., Tanimoto et al.,
2008; Kurokawa et al., 2009).

7.2 Improved integration of NWP and ACT models

Historically, air-pollution forecasting and NWP were developed separately and the cor-
responding communities had limited contact and cooperation. Although this situation25

could be tolerated in previous decades when NWP data was rarely available oper-
ationally for air-quality forecast models and the resolution of NWP models was too
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coarse for mesoscale air-pollution forecasting. However, this situation has changed
during this century as modern NWP models approach or include mesoscale and city-
scale resolution. This progress has been made possible due to advances in computing
power, high-speed computing networks and the availability of land-use databases and
remote-sensing data on a finer resolution.5

As a result, the conventional concepts of air-pollution forecasting may need revi-
sion, as greater integration is required between NWP models and atmospheric chem-
ical transport models. Several national meteorological services (e.g., Environment
Canada, and the Danish and Finnish Meteorological Institutes) have suggested extend-
ing meteorological weather forecasting to environment forecasting that includes both10

NWP and CWF. Clearly, this concept would ideally also include biological forecasting,
such as allergenic pollen species (Baklanov et al., 2010; Kukkonen et al., 2009a,b,c).

The on-line integration of NWP or other meteorological models with atmospheric
chemical transport and aerosol models has several advantages. Such an integration
provides the opportunity to use all three-dimensional meteorological fields in CTM’s15

at each time step and to include feedbacks of air pollution (especially those due to
aerosols) onto meteorological processes. Extensions into climate model include the
feedbacks between air pollution and climate forcing, as well as the atmospheric chem-
ical composition. Such a future direction of research could be viewed as part of a step
towards Earth Modelling Systems, and could potentially lead to a new generation of20

models for NWP and CWF (Baklanov, 2010).
However, the on-line approach is not the best way for the model integration in all

cases. For some tasks, such as for emergency preparedness, when NWP data are
available, off-line coupling can provide results more quickly. Both off-line and on-line
coupling of NWP models and CTM’s are therefore useful. A future research area25

will therefore be to assess the interfaces of these two categories and to establish a ba-
sis for their harmonization and benchmarking.

The communication between off-line coupled meteorological and air-quality models
is a problem of often underestimated importance. The multitude of modelling systems
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previously introduced gives rise to different approaches and methods implemented
within interface modules. Tasks covered by interfaces are minimized in coupled sys-
tems. Other systems use interface modules that implement surface and boundary layer
parameterisations to estimate dispersion parameters. Sometimes these latter choices
are due to the need to rely on conventionally used meteorological products and to5

guarantee the robustness of air-quality modelling for practical applications.
In other cases, interfaces are used to enhance the resolution of local physiographic

data and possibly to introduce advanced parameterisations (e.g., those for the urban-
isation of models). Atmospheric physics parameterisations – and even default and
upper- or lower-limit values assumed for some key parameters – can have effects on10

pollutant concentration fields in critical conditions (e.g., low wind-speed conditions, sta-
ble conditions). Moreover, interface modules may involve the evaluation of emissions
of species that can be substantially influenced by meteorology, such as biogenic VOC,
windblown dust and sea salt spray.

Improvements in CWF will also come from assimilating physical parameters that will15

lead to better estimates of clouds and mixing-layer heights. For example, the assimila-
tion of satellite-derived skin temperatures can be used to better determine heat capac-
ity and moisture fraction of grids, to fill gaps in diurnal energy budgets. This can result in
improved model performance of short-term forecasts of temperatures, mixing heights,
clouds, and photolysis rates (McNider et al., 2005; Arastoo et al., 2007). Recently20

established new COST Action ES1004: european framework for online integrated air
quality and meteorology modelling (EuMetChem) will focus on further development of
integrated CWF systems and on the new generation online integrated chemistry and
meteorology models with two-way interactions between atmospheric chemistry (includ-
ing gases and aerosols), clouds, radiation, boundary layer and other meteorological25

and climate processes.
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7.3 Boundary conditions and nesting of CWF models

An important aspect in the regional applications of CWF models is the type of initial and
boundary conditions used by CWF models. The use of climatological averages is one
of the common practices, but implementing boundary conditions obtained from global
air-quality models is currently a significant challenge (Tang et al., 2007). This chal-5

lenge consists in obtaining the required parameters (especially regarding the properties
of particulate matter) from the global model computations within a sufficient temporal
and spatial resolution. Another emerging research area is the development of optimal
nesting techniques of CWF models from the global to city scale, using one- or two-
way nesting techniques, with boundary conditions from larger-scale model domains to10

inner-domain model runs.
Chemical boundary conditions from global CWF systems are already provided op-

erationally to some regional CWFSs around the world. For example, within the
MEGAPOLI project, the global forecasts are provided by the MATCH-MPIC (Max
Planck Institute for Chemistry version) model. These provide boundary conditions for15

several operational European regional CWFSs. The ECMWF global CWF model pro-
vides chemical boundary conditions for the regional-scale European CWF models in
the GEMS project. The global CWF ensemble to be constructed in the MACC project
will update the regional model ensemble provided within the GEMS project.

Although using boundary conditions from global models improves predictive skill in20

regional models by providing more realistic temporal and spatial variability, they also
can transfer biases and errors. Further improvements are therefore needed in the
observing systems that provide information on the three-dimensional pollutant distri-
butions to improve our capability to predict pollution levels. Such improvements are
needed, for example, to better quantify the influence of the Asian brown dust cloud on25

the US West Coast air quality (Huang et al., 2010).
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7.4 Data assimilation of chemical species

As there is only a limited amount of available near-real-time measurements of chemical
concentrations, one of the challenges in CWF is how to insert that data into the mod-
els in order to obtain the best initial conditions (e.g., the initial spatial concentration
distributions of the relevant chemical species) and to improve the quality of CWF. The5

way this data is inserted is called data assimilation. Powerful assimilation techniques
may actually be more critical for achieving accurate forecasts than improvements in
the model formulations, at least regarding the short-range forecasts (1–2 days) (e.g.,
Carmichael et al., 2008a). The implementation of the various chemical data assimila-
tion methods in CWF models is therefore one of the crucial tasks in the improvement10

of regional CWF models.
The assimilation of meteorological data has traditionally been an essential part of

weather forecasting. Different methods of data assimilation are used in NWP mod-
els: Newtonian nudging method, Optimum Interpolation (OI), regional four-dimensional
data assimilation (FDDA), Kalman filter, the three-dimensional variational (3-D-VAR)15

and four-dimensional variational (4-D-VAR) data assimilation. In CWF, ensemble
Kalman filters and 4-D-VAR are most commonly used. It is beyond the scope of this pa-
per to provide a description of these methods. We confine ourselves to a few remarks
relevant for data assimilation into CW models.

In both the 4-D-VAR and Kalman filter approaches, the difference between observed20

and model values is measured by a weighted sum of squares, where the weights are
constructed from several covariance matrices. These matrices reflect uncertainties in
both data and model, and at least some of them have very large dimensions. Ensemble
methods circumvent the intractability of large covariance matrices by approximating
them by an ensemble of model states (in the CWF case, these are usually states of the25

CWF model).
The ensemble Kalman filter advances each member of an ensemble one time step

ahead. Then, a Kalman filter updating formula is applied, using observed data and
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covariance matrices approximated by low rank sample covariance matrices defined by
the ensemble. The classical Kalman filter update formula is based on assumptions
of an unbiased model and the error distribution being Gaussian. In real-life applica-
tions, nonlinearity of chemical reactions causes departures from Gaussianity, whereas
deficiencies in the model and errors in the inputs contribute to the bias (one typical5

example is nightly values of ozone in some models). The departures from the Kalman
filter assumptions are much larger in CWF models than in NWP models. These issues
and other types of filters are studied in Hanea et al. (2007).

A substantial difference between data assimilation in NWP models and CWF models
is due to different type of model equations. In CWF models, stiff differential equations10

with forcing terms from meteorological and emission inputs make the model quickly
converge from any reasonable initial conditions to a stable solution. Thus, in offline
CWF models, improvement of initial conditions by means of data assimilation brings
only a limited improvement in the forecast. The same issue causes loss of spread
in ensembles generated by perturbations of initial conditions. The sample covariance15

matrices generated by the ensemble become ill-conditioned and covariance inflation
or similar methods have to be used to avoid divergence of ensemble filters (Constanti-
nescu et al., 2007; Eben et al., 2005).

Another challenge in data assimilation into CWF models is the complexity of the
problem (the number of chemical species varies in the models from tens to hundreds).20

A key issue is choosing which chemical species to optimize in order to provide the best
results of the target forecast species. In variational methods, one may select a receptor
location and investigate which variables or parameters are responsible for changes and
errors of the model at the receptor. These methods (called adjoint sensitivity analysis
or receptor-oriented approach; Carmichael et al., 2008a) may be used for selection of25

state variables for data assimilation. Also, short-lived species and radicals are usually
not subject to optimization.

The difficulties mentioned above are the main causes why the number of applica-
tions of data assimilation in the area of CWF has grown only slowly during the last
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decade. Operational forecasting with incorporated data assimilation is occurring for
the EURAD model and for RCG (only ozone maxima), and research-based studies
have also been performed for LOTOS-EUROS, MATCH, RCG and SILAM. Most of the
operational CWF models are routinely initialized using concentrations of species ob-
tained from the forecasts of the previous day, with no regard to the observations. In5

order to make data assimilation more beneficial for the forecast, other parameters than
initial conditions should be optimized, too. Emission rates are the first candidate for op-
timization, but photolysis rates and deposition rates also may come into consideration
(Hanea et al., 2004). However, stability and validity (from the point of view of chemistry
or emission modelling) of such corrected parameters has to be checked in order to10

avoid artifacts.
Instead of optimizing initial conditions and other parameters for the operational fore-

casts, data assimilation methods can be applied. A fast-growing research area is in-
verse modeling of emissions using adjoint methods and 4-D-VAR. Although it is being
used mainly in global modelling for monitoring atmospheric constituents (e.g., Kopacz15

et al., 2010), its benefit to the forecast has also been demonstrated. For example, this
path has been followed by Elbern et al. (2000, 2007) for the EURAD model. In the US,
the adjoints of the global model GEOS-Chem (Henze et al., 2007) and mesoscale mod-
els STEM (Sandu et al., 2005) and CMAQ (Hakami et al., 2007) have been developed.
Adjoint modelling methods have been briefly reviewed in Table 13.20

Research on both inverse modelling and data assimilation has been boosted by the
availability of satellite-retrieved measurements (e.g., Chai et al., 2009). Global spatial
coverage, better representativeness of the measured area and gradually improving
resolution are the main virtues of these data, whereas censoring by clouds, relatively
poor time resolution (e.g. two times daily over one spot) and inaccuracies of the retrieval25

process are the main drawbacks. Satellite instruments can also provide information
that is largely complementary to that obtained from in-situ measurements. An overview
of European research on remote-sensing of tropospheric constituents is the ACCENT-
TROPOSAT-2 report (Burrows and Borrel, 2009). We confine ourselves here to some
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general remarks related to CWF.
The satellite-based data, which enter a data assimilation system, are most com-

monly integrated over the whole atmospheric column, although vertical profiles are
also provided in some cases (e.g., the IASI instrument). Tropospheric columns are
derived from total columns; one then has to be address the generally poorer sensitivity5

of satellite observations to concentrations in the lower troposphere. Cloud cover has to
be estimated, as well as other meteorological variables. For example, air-mass factor
(the ratio between the retrieved slant column and the atmospheric vertical column) is
needed for knowing the absorption of the light path through the atmosphere. As a re-
sult, satellite columns are a result of a complicated retrieval process leading from the10

observed spectra to a vertical column density. The uncertainty of the retrieval process
therefore needs to be quantified for successful data assimilation.

At some stage, a data assimilation routine may be used, having as its first guess
the vertical profile of a global CW model. For example, a global CWF model TM
(http://www.knmi.nl/∼velthove/tm.html) is used in retrieving NO2 column from the OMI15

instrument in the near-real-time service TEMIS (Tropospheric Emission Monitoring In-
ternet Service, www.temis.nl) of the European Space Agency.

7.5 Improved understanding and parameterization of physical processes

The improvements required for the understanding and parameterization of subgrid-
scale physical processes for CWF include at least two emerging areas. The first area20

is the accuracy of meteorological parameters (e.g., atmospheric boundary layer struc-
ture, velocity, temperature, turbulence, humidity, cloud water, precipitation) within NWP
models or in meteorological pre-processors. The second area is the description of
the interactions of chemical species in the atmosphere (clouds, radiation, removal pro-
cesses, chemical reactions, aerosol formation and dynamics, etc.) within CWF models25

themselves.
Areas of necessary NWP model improvement include the overall treatment of

complex terrain and rough surfaces (e.g., for urban areas), turbulence closure and
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mesoscale convection. The description of complex terrain and mesoscale circulations
can be of crucial importance in CWF models, as discussed by, e.g., Millan et al. (1996),
Gangoiti et al. (2001), Dayan and Levy (2002) and Dayan and Lamb (2005). Amongst
the most challenging cases for CWFSs to predict are episodes of high pollutant con-
centrations, which commonly occur with low winds and stable stratification, possibly in5

complex terrain, that cause shallow boundary layers with suppressed turbulent mixing
(e.g., Kukkonen et al., 2005a,b). These situations create problems for current meth-
ods and models to realistically reproduce meteorological input fields. A gap has thus
emerged between modern understanding of boundary layer physics and the limited
applicability of boundary layer schemes in operational CWF models.10

As most of the pollutants are dispersed within the boundary layer, the mechanisms
controlling concentrations substantially depend on the turbulence and the boundary
layer height. The temporal and spatial variations of the boundary layer height and the
entrainment processes at the top of the boundary layer lead to the infiltration of pollu-
tants from the boundary layer to the free troposphere and, vice versa, to the intrusion15

of some chemical compounds (e.g., ozone) from the upper-atmospheric layers down to
the surface. Physical processes controlling the boundary layer height and the turbulent
entrainment are therefore of crucial importance for CWFSs. Some of the important
physical processes at the top of the boundary layer (e.g., Zilitinkevich et al., 2007)
are still insufficiently understood, such as turbulent entrainment in rapidly deepening20

convective boundary layers and non-steady interactions between the stable boundary
layers and the free flow.

Most of the operational CWF models use simplified wet deposition schemes based
on two-dimensional surface precipitation intensity data; however, online integrated
models (e.g., Enviro-HIRLAM) are allowed to realise more comprehensive schemes25

using fully three-dimensional real-time cloud characteristics. However, one of the chal-
lenges in this emerging area is to improve the quality of the simulation of cloud pro-
cesses and precipitation forecasts within NWP models.
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Improving computational power makes it possible to reduce the model resolution to-
wards smaller scales. As the physical parameterization is dependent on the resolution
of a prediction model, some adjustments of parameterizations have to be made when
the resolution is increased.

Piriou et al. (2007) presented an approach in which the grid-scale budget equations5

of parameterization used separate microphysics and transport terms. This separation
is used both as a way to introduce into the parameterization a more explicit causal
link between all involved processes and as a vehicle for an easier representation of
the memory of convective cells. Piriou et al. (2007) argued that future results could
be improved by using more complex microphysics (e.g., prognostic liquid, ice, rain,10

snow, etc.), getting closer to that of a cloud-resolving model, and relaxing the small-
area assumption. According to Piriou et al. (2007), the microphysics and transport
advective scheme equations can manage all types of convection.

In the future, a possible perspective will be to unify the convection parameterization
exercise, using a single equation set at grid-scale and a single microphysical pack-15

age. As an example, Gerard (2007) has introduced microphysics and transport advec-
tive scheme equations into a scheme using more complex prognostic microphysics,
area fraction, and vertical velocity with encouraging results. Gerard (2007) developed
a package that aims at solving efficiently the problem of combining resolved and sub-
grid condensation at all resolutions, in particular in the range between 10 km and 2 km,20

where deep convection is partly resolved and partly subgrid.
Knowledge of the emissions of relevant organic species and their atmospheric chem-

istry limits the understanding of secondary organic aerosols, which are of importance
for both air quality and climate change (e.g., Monks et al., 2009). Correspondingly,
the models for the aerosol formation and dynamics need to be implemented into CWF25

models, and the chemical mechanisms used in CWF models should be substantially
improved to be able to simulate sufficiently accurately such processes.

Combined models have already been developed for dispersion modelling and
aerosol processes, including the size distributions and chemical speciation (e.g., Vi-
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gnati et al., 2004; Gross and Baklanov, 2004; Pohjola et al., 2007; Hussein et al., 2007;
Medina et al., 2007; Dusek et al., 2006; Langmann et al., 2008). The aerosol pro-
cesses include the growth and nucleation processes, and the transport and deposition
pathways of the aerosols. Furthermore, as the aerosol dynamics models (this term is
used here as a synonym to aerosol process models) are important tools to investigate5

both the direct and the indirect effects on climate, aerosol–radiation–cloud interactions
are important processes that need to be treated in the models (Ramanathan et al.,
2001; Rosenfeld et al., 2008; Levin and Cotton, 2009). Several of these processes
require direct coupling of the meteorological and air quality models.

These processes need to be included to achieve a comprehensive representation10

of the atmosphere. State-of-the-art aerosol modules include a sectional representa-
tion of the size and chemical composition distribution functions, as well as aerosol
microphysical processes. However, the available emission databases do not currently
provide sufficient details for executing such combined dispersion and aerosol process
models over extensive regions. This means that estimates of the sectional emissions15

that are needed as input for the detailed models have to be mostly based on indirect
information.

7.6 Better evaluation of CWF models with data

The evaluation of models by comparison with measured data has also to advance the
model performance, rather than solely characterize whether a simulation is successful20

or not (e.g., Gilliland et al., 2008). The comparisons should use as broad and diverse
set of measured data as possible. Currently the evaluation of chemical weather models
is mainly based on the comparison of measured and simulated concentration levels at
the ground level, and in some cases on satellite data. Clearly, the data comparison
only based on one vertical level does not assure a proper simulation of the state of the25

atmoshere. Whenever available, especially vertical profiles of air pollutants should be
included in the evaluation procedure.
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Moreover, the performance of models is usually evaluated only for a limited number
of pollutants or PM measures, such as NOx, O3 and PM10, which are the ones mea-
sured routinely at most monitoring networks. An ideal comparison would be based
on the analysis of a sufficiently large number of pollutants, for the selected period of
time (or periods) and location (or locations). Clearly, monitoring supersites (or their5

networks) are useful for this kind of evaluation and could potentially allow evaluating
the model capabilities to simulate various physical-chemical processes.

Regarding the evaluation of operational CWF models, a special concern is the avail-
ability of near real time (NRT) meteorological and air quality data. Efforts to deliver NRT
data (centralised in a common and accessible data base) have been made within the10

GEMS project, which fits into the current WMO (World Meteorological Organization)
activities. However, there is still substantial amount of work to be done in this area; fast
mechanisms need to be developed, implemented and tested to access the data and to
evaluate the CWF models.

Currently, the evaluation of models regarding particulate matter (PM) commonly uses15

mostly the measurements of PM10 and, only to a smaller extent, PM2.5, and size- and
chemically-resolved PM data. However, the evaluation of models in Europe should
in the future focus on PM2.5 (or PM1) instead of PM10, as it is more relevant from
a health perspective. Due to the new European legislation, PM2.5 monitoring data
will be extensively measured in the European Union, and the new monitoring network20

needs to be evaluated.
Furthermore, the understanding and evaluation of the chemical components of par-

ticulate matter is needed to make sure that the model predictions are right for the right
reasons, and to close the gap between modeled and measured concentrations of PM.
For instance, the evaluation of only the total PM10 concentration may not reveal seri-25

ous shortcomings in a model with respect to the treatments of the PM components.
Moreover, size-resolved PM data are crucial in order to reduce uncertainties in our un-
derstanding of the modelling of the emissions, dispersion and transformation of PM.
Aerosol chemistry and process modules are needed to evaluate the aerosol compo-
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nents; the model evaluation does not in that case need to restrict to only PM10 and
PM2.5.

Clearly, measurements routinely carried out at air pollution networks can only be
used for model evaluation in case of a limited set of chemical components and mea-
sures. Species of interest for model comparison are not necessarily measured (e.g.,5

peroxyacetyl nitrate (PAN), aldehydes, actinic flux, turbulent flux, other particulate mat-
ter measures except for PM masses), and the measurement locations are not always
representative of the regional background air (e.g., the station could be located down-
wind of an urban area). In addition, the vertical profiles of concentrations are typically
not measured.10

More emphasis should also be given to the systematic evaluation of the spatial rep-
resentativeness of the monitored and simulated data. Clearly, when comparing model
predictions to measured data we compare one spatially and temporally averaged value
(a predicted one) to another one (the measured one). However, in general the averag-
ing or representativeness space and time scales are not the same.15

The model validation against observed data requires statistical analysis that should
give information about the ability of the model to predict the observed values and type of
errors (systematic or unsystematic). Generally the statistical analysis contains a com-
putation of a set of parameters and measures. It is possible to define various subsets
of such statistical parameters that can fairly well represent the various aspects of the20

performance of the model, e.g., the correlation coefficient, the fractional bias and the
root and normalized mean square errors. However, these statistical quality indicators
should be accompanied by other methods, for instance, time series and scatter plots
could be an important complement to the referred parameters. Clearly, parameters
that reflect the capability to simulate concentration peaks should also be taken into25

consideration in chemical weather forecasting.
Clearly, besides the comparison of model results to data, several other steps should

be considered to ensure model quality. These include model sensitivity tests, model in-
tercomparisons and uncertainty analysis (e.g., Borrego et al., 2008). In terms of model
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intercomparison, several international model exercises have been and are currently
ongoing within the MEGAPOLI and MACC projects, CityDelta and EURODELTA, vari-
ous COST Actions, AQMEII (Air Quality Model Evaluation Internaltional Initiatives) and
FAIRMODE (Forum for AIR quality MODElling). Such inter-comparison exercises are
useful to identify the strengths and weaknesses of models, and to show the strategies5

to improve their performance.

7.7 Model ensembles

Ensemble forecasting has been a key area of traditional meteorology during the last
decades. From the experience of operational meteorology, two major sources of fore-
cast errors can be distinguished. The first source resides in the uncertainties of the10

initial conditions, as a result of the limited number and inaccuracies of available ob-
servations. The second source is the imperfectness of the models, resulting from
limitations in the descriptions of physical processes, the finite spatio-temporal reso-
lution of numerical models and the inability to explicitly resolve and simulate processes
beyond the selected grid-scale. As a consequence of these two sources of forecast15

errors, weather forecasts deteriorate as the forecasting period increases.
In addition to the accuracy of the initial conditions and the limitations of the numerical

model, the forecast skill also depends on instabilities of the flow itself, as was already
identified in the early works of Lorenz (1963, 1965). Simmons et al. (1995) note the dif-
ficulty to assess a-priori whether a forecast would be skillfull or unskillfull, using only20

a deterministic approach to weather prediction. Clearly, presentation of the history of
ensemble prediction is beyond the scope of this paper. However, two important bench-
marks need to be mentioned in the implementation of operational ensemble prediction
systems, at both ECMWF and NCEP (e.g. Palmer et al., 1993; Molteni et al., 1996;
Tracton and Kalnay, 1993). These systems were focused on the perturbation of the25

initial conditions, following indications on the relative importance of the uncertainties in
initial conditions compared to deficiencies in the model (e.g., Downton and Bell, 1988;
Richardson, 1998). Ensemble forecasting continues to be an area of active research,
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concerning, e.g., the design and composition of the ensembles (e.g., Kalney, 2002).
In the field of chemical weather, ensemble forecasting is still an emerging area (e.g.,

Potempski et al., 2008). There are currently numerous well-validated CWFIS’s in Eu-
rope that are used both for research and operational applications in direct support of
decision making. However, any of these single modelling approaches bears inherent5

uncertainties, both originated from its formulation, the parameterization used and from
the input data used (meteorology, emissions, chemical rate constants, etc.). It is there-
fore desirable to enrich the information provided by the individual deterministic models
with probabilistic information, e.g., the range of uncertainties, taking stock of the ex-
isting diversity of different modelling systems in Europe (e.g., Kukkonen et al., 2009c).10

The three key objectives of ensemble forecasting as identified by, e.g., Kalney (2002),
are to (i) improve the forecast by ensemble averaging, (ii) to provide an indication of
the reliability of the forecast, and (iii) to provide a quantitative basis for probabilistic
forecasting.

Compared to traditional weather forecasting using model ensembles, chemical15

weather ensemble prediction has a much shorter historical record. Early studies com-
prise works in the field of air quality forecasting (Delle Monache and Stull, 2003) and
dispersion modelling (Galmarini et al., 2004b,c). Like in meteorology, these studies
have investigated both techniques based on the perturbation of single modelling sys-
tems (Mallet and Sportisse, 2006) and on a collection of results from different modelling20

systems (van Loon et al., 2007; Vautard et al., 2008). Unlike in meteorology, however,
air quality is not primarily determined by initial conditions but rather is the result of
a range of processes (such as, e.g., emissions, transport, deposition, chemistry) that
all provide tendencies that have similar orders of magnitude. This state of affairs re-
quires one to develop approaches that are more complex than the well-established25

techniques used in numerical weather prediction (e.g., Pinder et al., 2009).
The forecasts obtained by processing the ensemble of models (for instance, taking

the median of all values in each grid-point) can, in many cases, perform better than any
single model. Riccio et al. (2007) have proposed a theoretical basis in the case of dis-
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persion, providing some justification to the relatively better performance of the median
of models. The current operations in the GEMS and MACC projects have used a more
elaborate ensemble technique, based upon the differential weighting of the individual
models, according to their skill monitored over the last few days. However, a long-term
improvement in chemical weather forecast performances is based on the improvement5

of individual models and their representation of dynamical, physical and chemical pro-
cesses. The elaboration of sophisticated hydrizing ensemble methods merely aims at
achieving the best from what is currently available. The spread of predictions in a col-
lection of models can also be used as a measure of the model uncertainty (Vautard
et al., 2006).10

8 Conclusions

What do we see in the future for CWF models? To summarize this paper, we focus
on two challenge areas: the large number of chemical species and processes, and
communicating uncertainty.

First, although a relatively new field, CW forecasting is developing quickly, touching15

upon research, development, and operational forecasting. An analogy with weather
forecasting can be useful to demonstrate the challenges ahead. Although CTM’s can
be coupled to NWP models either off-line or on-line at present, a scientific perspective
of CWF would argue for an eventual migration from off-line modeling (where the CTM is
run after the NWP model run is completed) to on-line modeling, allowing coupling and20

integration of the physical and the chemical components of CWFIS‘s. Such a future
is not hard to imagine, given similar trends of Earth system modelling, for example.
Specifically, better and more complete representations of physical and chemical pro-
cesses and interactions in the models are needed. When compared to weather fore-
casting, CW forecasting has still a long way to go. Despite the nearly 50-year lead that25

NWP has over CWF (e.g., Harper et al., 2007), CWF models have other challenges
that inhibit as rapid a progress.
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A key challenge appears to rather be the dimensionality and complexity of the prob-
lem itself. For example, the traditional set of prognostic state variables in weather
forecasting (e.g., temperature, wind, precipitation) expands to hundreds of prognostic
variables because of the extensive number of chemical species involved. In particular,
resolving, simulating, and parameterizing processes is no longer limited to relatively5

well-known physical processes, but is compounded by a huge amount of both chemi-
cal and physical processes (e.g., interactions between species, emission, deposition,
radiation). This simple fact has important ramifications for predictability, data assimi-
lation, and ensemble prediction, where scientific and technological progress in CW is
slower than in traditional meteorology. Importantly, progress is also inhibited by the lack10

of or insufficient monitoring of many relevant species and the lack of well-established
monitoring data-exchange mechanisms, although several projects and initiatives are
working to address these issues.

Second, as is evident from this review article, numerous well-validated operational
CWFIS’s operate in Europe, addressing the needs of a large spectrum of users from15

governmental organizations to the individual citizen (e.g., Schluenzen and Sokhi, 2008;
Karatzas and Kukkonen, 2009; Baklanov et al., 2010; Balk et al., 2010). How is the out-
put from CWF models assessed and interpreted for the end users? Moreover, how do
we interact with those users to provide the needed services? Through initiatives such
as the GMES Atmospheric Service and its implementation projects GEMS, PROMOTE,20

MACC and PASODOBLE (Promote Air Quality Services integrating Observations – De-
velopment Of Basic Localised Information for Europe) and the various relevant COST
actions, such as COST 728 and COST ES0602, scattered modelling initiatives and ef-
forts – which are often national or regional in scale – can be integrated. This also offers
the possibility to move from deterministic forecasts of chemical weather to ensemble25

chemical weather prediction systems.
With the ability to assess and explore ensemble prediction systems comes the chal-

lenge in communicating probabilistic chemical weather forecasts. Again, many lessons
can be learned from the weather forecasting community, who are actively facing such
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concerns with weather forecasts, in general (e.g., Board on Atmospheric Sciences and
Climate, 2006; Novak et al., 2008; Morss et al., 2008), and the communication of hurri-
cane tracks, in particular (e.g., Broad et al., 2007). Although some user communities of
weather information (e.g., industrial, agricultural, hydrological) are comfortable dealing
with probabilistic forecasts, many air-quality users are relatively new to this concept.5

Thus, much can be gained through a closer dialogue with relevant user communities
(e.g., the so-called “end-to-end-to-end” approach described by Morss et al. (2005), and
this communication can spawn future research opportunities.

Successful CWFIS services will also need to aggregate and integrate information
and deliver it in a way that is comprehensible, user-friendly, timely, and reliable, and10

international activities such as the World Meteorological Organisation Global Atmo-
spheric Watch, Urban Research Meteorology and Environment (GURME) project can
assist in these efforts. As a first step, the European chemical weather forecasting portal
by the COST ES0602 action (Balk et al., 2010) attempts to integrate existing chemical
weather forecast and information solutions offered by numerous institutions within Eu-15

rope. This portal provides a direct gateway to the individual resources and is intended
to complement and support other European initiatives such as the GMES Atmospheric
Services.

Frequently used abbreviations and acronyms in this article

ABL Atmospheric Boundary layer
ALADIN Aire Limitée Adaptation Dynamique Initialisation
ALADIN-CAMx Comprehensive Air quality Model with extensions

based on ALADIN-Austria forecast data
BEIS3 Biogenic Emission Inventory System
CAC tropospheric Chemistry Aerosol Cloud transport model
CAMx Comprehensive Air quality Model with extensions

20
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CAMx-AMWFG Comprehensive Air Quality Model with Extensions – The
Atmospheric Modeling and Weather Forecasting Group

CWF chemical weather forecasting
CWFIS chemical weather forecasting and information system
CTM chemistry-transport models
DMAT Dispersion Model for Atmospheric Transport
DMI Danmaks Meteorologiske Institut
ECMWF the European Centre of Medium-Range Weather Forecasts
EEA/MDS European Environment Agency/Model Documentation

System
EMEP European Monitoring and Evaluation Programme
Enviro-HIRLAM Environment-HIgh Resolution Limited Area Model
EURAD European Air Pollution and Dispersion Model
FARM Flexible Air quality Regional Model
GEMS Global and regional Earth-system (Atmosphere) Monitoring

using Satellite and in-situ data
GME Global Model of DWD (DWD – German Weather Service)
GMES Global Monitoring for Environment and Security
HIRLAM HIgh Resolution Limited Area Model
IFS Integrated Forecast System (ECMWF)
LAI Leaf Area Index
LOTOS-EUROS LOng Term Ozone Simulation – EURopean Operational

Smog model
MACC Monitoring Atmospheric Composition and Climate
MATCH Multi-scale Atmospheric Transport and Chemistry Model
MEGAPOLI Megacities: Emissions, urban, regional and Global Atmo-

spheric POLlution and climate effects, and Integrated tools
for assessment and mitigation

MM5 Fifth Generation PSU/NCAR Mesoscale Model
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MM5-CAMx Fifth Generation PSU/NCAR Mesoscale Model – Compre-
hensive Air quality Model with extensions

MM5-CHIMERE Fifth Generation PSU/NCAR Mesoscale Model – CHIMERE
MM5-CMAQ Fifth Generation PSU/NCAR Mesoscale Model – Commu-

nity Multiscale Air Quality Model
MOCAGE Modèle de Chimie Atmoshérique à Grande Echelle
NAME Numerical Atmospheric-dispersion Modelling Environment
NCAR National Center for Atmospheric Research
NCEP National Centres for Environmental Prediction
NRT Near-Real Time
NWP numerical weather prediction
OPANA Operatina l version of Atmospheric mesoscale Numerical

pollution model for urban and regional Areas
PBL Planetary Boundary Layer
PM Particulate Matter
PROMOTE PROtocol MOniToring for the GMES Service Element
RACM Regional Atmospheric Chemistry Mechanism
RADM Regional Acid Deposition Model
RCG REM3-CALGRID – Regional Eulerian Model – California

Grid Model
SILAM Air Quality and Emergency Modelling System
THOR an integrated air pollution forecast and scenario manage-

ment system
TNO the Netherlands Organisation for Applied Scientific Re-

search
VOC volatile organic compounds
WRF/CHEM The Weather Research and Forecast model coupled with

Chemistry
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Livesey, N. J., Massart, S., Peuch, V.-H., Piacentini, A., Sauvage, B., Thouret, V., and Cam-
mas, J.-P.: Transport pathways of CO in the African upper troposphere during the monsoon
season: a study based upon the assimilation of spaceborne observations, Atmos. Chem.
Phys., 8, 3231–3246, doi:10.5194/acp-8-3231-2008, 2008.

Bartnicki, J., Salbu, B., Saltbones, J., Foss, A., and Lind, O. C.: Gravitational settling of parti-25

cles in dispersion model simulation using the Chernobyl accident as a test case, Research
Report, 131, Norwegian Met. Inst., Oslo, 43 pp., 2001.

Baumann-Stanzer, K., Hirtl, M., and Krueger, B. C.: Regional-scale air quality forecasts for
Austria, in: Abstracts of the 5th EMS Annual Meeting/ECAM, Volume 2, 12–16 September
2005, Utrecht, The Netherlands, EMS05-A-00036, ISSN 1812-7053 (CD-ROM), 2005.30

Bechtold, P., Bazile, E., Guichard, F. Mascart, P., and Richard, E.: A mass flux convec-
tion scheme for regional and global models, Q. J. Roy. Meteor. Soc., 127, 869–886,
doi:10.1256/smsqj.57308, 2001.

6092

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/5985/2011/acpd-11-5985-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/5985/2011/acpd-11-5985-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.5194/asr-2-41-2008
http://dx.doi.org/10.1016/j.atmosenv.2010.09.058
http://dx.doi.org/10.5194/acp-8-3231-2008
http://dx.doi.org/10.1256/smsqj.57308


ACPD
11, 5985–6162, 2011

Operational, regional-
scale, chemical

weather forecasting
models in Europe

J. Kukkonen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Beekmann, M. and Vautard, R.: A modelling study of photochemical regimes over Europe: ro-
bustness and variability, Atmos. Chem. Phys., 10, 10067–10084, doi:10.5194/acp-10-10067-
2010, 2010.

Beekmann, M., Kerschbaumer, A., Reimer, E., Stern, R., and Möller, D.: PM measurement
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Ketzel, M., and Wåhlin, P.: Estimating domestic wood burning emissions of particulate mat-
ter in two nordic cities by combining ambient air observations with receptor and dispersion
models, Chem. Ind. Chem. Eng. Q., 16(3), 237–241, doi:10.2298/CICEQ091214019D, UDC
662.63(48):502/504, 2010.

Derognat, C., Beekmann, M., Baeumle, M., Martin, D., and Schmidt, H.: Effect of biogenic20

volatile organic compound emissions on tropospheric chemistry during the atmospheric pol-
lution over the paris area (ESQUIF) campaign in the Ile-de-France region, J. Geophys. Res.,
108(D17), 8560, 2003.

Dodge, M.: Chemical oxidant mechanisms for air quality modeling: critical review, Atmos. Env-
iron., 34, 2103–2130, 2000.25

Doms, G. and Schättler, U.: The nonhydrostatic limited-are a model LM (Lokal-Modell) of DWD,
Part I: Scientific documentation, Deutscher Wetterdienst, available at: Deutscher Wetterdi-
enst Postfach 100465, 63004 Offenbach, Germany, 155 pp., 1997.

Downton, R. A. and Bell, R. S.: The impact of analysis differences on a medium-range forecast,
Meteorol. Mag., 117, 279–285, 1988.30

Dudhia, J.: A nonhydrostatic version of the Penn State–NCAR mesoscale model: validation
tests and simulation of an Atlantic cyclone and cold front, Mon. Weather Rev., 121, 1493–
1513, 1993.

6098

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/5985/2011/acpd-11-5985-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/5985/2011/acpd-11-5985-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1029/2002JD002147
http://dx.doi.org/10.2298/CICEQ091214019D


ACPD
11, 5985–6162, 2011

Operational, regional-
scale, chemical

weather forecasting
models in Europe

J. Kukkonen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Dufour, A., Amodei, M., Ancellet, G., and Peuch, V.-H.: Observed and modelled “chemical
weather” during ESCOMPTE, Atmos. Res., 74(1–4), 161–189, 2004.

Dunker, A. M., Yarwood, G., Ortmann, J. P., and Wilson, G. M.: The decoupled direct method
for sensitivity analysis in a three-dimensional air quality model – implementation, accuracy
and efficiency, Environ. Sci. Technol., 36, 2965–2976, 2002.5

Dusek, U., Frank, G. P., Hildebrandt, L., Curtius, J., Schneider, J., Walter, S., Chand, D.,
Drewnick, F., Hings, S., Jung, D., Borrmann, S., and Andreae, M. O.: Size matters more
than chemistry for cloud-nucleating ability of aerosol particles, Science, 312(5778), 1375–
1378, doi:10.1126/science.1125261, 2006.

Egan, B. A. and Mahoney, J. R.: Numerical modeling of advection and diffusion of urban area10

source pollutants, J. Appl. Meteorol., 11, 312–322, 1972.
Eben, K., Jurus, P., Resler, J., Belda, M., Pelikan, E., Krueger, B. C., and Keder, J.: An ensemble

Kalman filter for short term forecasting of tropospheric ozone concentrations, Q. J. Roy.
Meteor. Soc., 131(613), 3313–3322, 2005.

Eder, B., Kang, D., Mathur, R., Yu, S., Schere, K.: An operational evaluation of the Eta–CMAQ15

air quality forecast model, Atmos. Environ., 40, 4894–4905, 2006.
Eder, B., Kang, D., Mathur, R., Pleim, J., Yu, S., Otte, T., and Pouliot, G.: A performance eval-

uation of the national air quality forecast capability for the summer of 2007, Atmos. Environ.,
43, 2312–2320, 2009.

EEA: Air pollution in Europe 1990–2004, EEA report No 2/2007, European Environment20

Agency, 79 pp., Copenhagen, Denmark, 2007.
Eerola, K.: Experimentation with a three-dimensional trajectory model, in: Meteorological Pub-

lications No. 15, Finnish Meteorological Institute, 33 pp., Helsinki, Finland, 1990.
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Schlüenzen, K. H. and Sokhi, R. S.: Overview of tools and methods for meteorological and25

air pollution mesoscale model evaluation and user training, Joint report by WMO and COST
728, WMO/TD-No. 1457, Geneva, Switzerland, Electronic version: November 2008, 2008.

Schoenemeyer, T., Richter, K., and Smiatek, G.: Vorstudie uber ein raumlich und zeitlich
aufgelostes Kataster anthropogener und biogener Emissionen fuer Bayern mit Entwick-
lung eines Prototyps und Anwendung fur Immissionsprognosen, Abschluss bericht an das30

Bayerische Landesamt fur Umweltschutz, Fraunhofer-Institut fuer Atmosphaerische Umwelt-
forschung, Garmisch-Partenkirchen, 1997.

Schulz, M., Chin, M., and Kinne, S.: The aerosol model comparison project, AeroCom,

6125

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/5985/2011/acpd-11-5985-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/5985/2011/acpd-11-5985-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.5194/acp-4-857-2004


ACPD
11, 5985–6162, 2011

Operational, regional-
scale, chemical

weather forecasting
models in Europe

J. Kukkonen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Phase II: Clearing up diversity, IGAC Newsl., No 41, May 2009.
Scott, B. C.: Parameterization of sulphate removal by precipitation, J. Appl. Meteorol., 17,

1375–1389, 1978.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to

Climate Change, John Wiley and Sons, Inc., NY, 1998.5

Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to
Climate Change, 2nd edn., John Wiley & Sons, New Jersey, 2006.

Seity, Y., Brousseau, P., Malardel, S., Hello, G., Bénard, P., Bouttier, F., Lac, C., and Masson, V.:
The AROME-France convective scale operational model, Mon. Weather Rev., submitted,
2010.10

Shankar, U., Bhave, P. V., Vukovich, J. M., and Roselle, S. J.: Implementation and initial appli-
cations of sea salt aerosol emissions and chemistry algorithms in the CMAQ v4.5-AERO4
module, in: 4th annual CMAS Models-3 Users’ Conference, Chapel Hill, NC, 26–28 Septem-
ber 2005, available at: http://www.cmascenter.org/conference/2005/abstracts/p7.pdf, p. 6,
2005.15

Silibello, C., Calori, G., Brusasca, G., Giudici, A., Angelino, E., Fossati, G., Peroni, E., and
Buganza, E.: Modelling of PM10 concentrations over Milano urban area using two aerosol
modules, Environ. Modell. Softw., 23(3), 333–343, 2008.

Simmonds, P. G., Derwent, R. G., McHulloch, A., O’Doherty, S., and Gaudry, A.: Long term
trends in concentrations of halocarbons and radiatively active gases in Atlantic and European20

air masses monitored at Mace Head, Ireland from 1987–1994, Atmos. Environ., 30(23),
4041–4063, 1996.

Simmons, A. J., Mureau, R., and Petroliagis, T.: Error growth and predictability estimates for
the ECMWF forecasting system, Q. J. Roy. Meteor. Soc., 121, 1739–1771, 1995.

Simpson, D.: Long period modeling of photochemical oxidants in Europe, Calculations for July25

1985, Atmos. Environ., 26, 1609–1634, 1992.
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desamts, Modellierung und Prüfung von Strategien zur Verminderung der Belastung durch
Ozon, Freie Universität Berlin, Institut fr Meteorologie, 2003 (in German).10

Stern, R., Builtjes, P., Schaap, M., Timmermans, R., Vautard, R., Hodzic, A.,
Memmesheimer, M., Feldmann, H., Renner, E., Wolke, R., and Kerschbaumer, A.: A model
inter-comparison study focussing on episodes with elevated PM10 concentrations, Atmos.
Environ., 42(19), 4567–4588, 2008

Stockwell, W. R.: A homogeneous gas phase mechanism for use in a regional acid deposition15

model, Atmos. Environ., 20, 1615–1632, 1986.
Stockwell, W. R. and Kley, D.: The Euro-RADMechanism, A Gas-Phase Chemical Mechanism

for European Air Quality Studies, Berichte des Forschungszentrums Jülich 2686, Research
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Table 1. Selected main characteristics of the 18 chemical weather forecasting (CWF) models
considered in this study.

Model name Coupling Country and institution
using it

Dispersion
model

NWP model Type Horizontal grid
spacing

Vertical grid
spacing

Basic reference

ALADIN-
CAMx

Offline ZAMG,
Austria,
Marcus Hirtl

CAMx ALADIN-
Austria

3-D Eulerian ∼28.8 km for the
mother grid and
9.7 km for the inner
modeling domain

Grid spacing from
30 m to 2500 m in
Troposphere

http://www.cnrm.meteo.fr/aladin;
http://www.camx.com

CAMx-
AMWFG

Offline National and Kapodistrian
University of Athens,
Greece,
George Kallos,
Marina Astitha

CAMx SKIRON/Dust 3-D Eulerian 0.24×0.24◦

(∼24 km)
22 layers up to
8 km

http://forecast.uoa.gr/index.php;
http://www.camx.com

ENVIRO-
HIRLAM

Online DMI,
Denmark,
International HIRLAM team,
Alexander Baklanov

Enviro HIRLAM 3-D Eulerian Europe: 15–45 km;
Nest grids:
1.4–5 km

40 layers, grid
spacing from 30 m
to 500 m

http://hirlam.org;
https://hirlam.org/trac/wiki

EURAD-RIU Offline RIU, Cologne, Germany
Hermann Jakobs,
Hendrik Elbern,
Michael Memmesheimer

EURAD MM5 3-D Eulerian Europe: 125 km;
Central Europe:
25 km, German
States: 5 km

23 layers from 40 m
to 2000 m at top
(100 hPa)

http://www.eurad.uni-koeln.de

FARM Offline ARIANET s.r.l.
Italy,
Giuseppe Calori,
Camillo Silibello

FARM RAMS 3-D Eulerian Grid size 1 km–
50 km; 50 to 100
cells in each
dimension

Grid spacing from
10 m to 1000 m,
domain size from
3 km to 10 km

http://www.aria-net.it/index eng.php;
http://www.minni.org/htm farm2/
Introduzione.htm

LOTOS-
EUROS

Offline TNO/RIVM/PBL/KN,
The Netherlands,
P.J.H. Builtjes, M. Schaap,
R.M.A. Timmermans

LOTOS-
EUROS

ECMWF 3-D Eulerian ∼25 km, zooming
to 12 km or 6 km

4 layers, domain
size from 25 m to
3.5 km

http://www.lotos-euros.nl/

MATCH Offline SMHI,
Sweden,
Lennart Robertson,
Thomas Klein

MATCH ECMWF,
HIRLAM

3-D Eulerian From ∼50 km
down to 0.5 km

Usually depending
on met. model.
At present for
HIRLAM: domain
heigh ∼8 km, low-
est level at ∼30 m

http://www.smhi.se/sgn0106/if/FoUl/
en/index.html;
Robertson et al. (1999),
Langner et al. (2005)

MM5-CAMx Offline National and Kapodistrian
University of Athens Aristotle
University of Thessaloniki,
Greece
Zerefos Christos,
Melas Dimitrios

CAMx MM5 3-D Eulerian Mother grid:
Europe (30 km)
Nest grids: Balkan
Peninsula (10 km)
and Athens (2 km)

CAMx: 15 vertical
layers, layer height
20 m, top at 7 km.
MM5: 29 vertical
sigma-levels, top at
100 mbar

http://www.mmm.ucar.edu/mm5;
http://www.camx.com;
http://lap.phys.auth.gr/gems.asp

MM5-
CHIMERE

Offline Mesoscale Prediction Group
in the Mesoscale and
Microscale Meteorology
Division, NCAR, Greece,
Lia Fragkou (Model user)

CHIMERE MM5 3-D Eulerian MM5: 1 km–
90 km CHIMERE:
1 km–100 km over
domains 50 km–
5000 km

CHIMERE: grid
spacing from 10 m
to 3000 m, domain
size from 10 m to
5 km

http://www.mmm.ucar.edu/mm5;
http://www.lmd.polytechnique.fr/
chimere

MM5/WRF-
CMAQ

Offline MM5-PSU/NCAR, Run
operationally by the ESMG
at Computer Science School
of the Technical University of
Madrid (UPM), Spain,
Roberto San Jose WRF-NCAR/
NCEP run routinely at the
Centre for Atmospheric and
Instrumentation Research
(CAIR), University of Hertford-
shire, UK, Ranjeet Sokhi

CMAQ MM5/WRF 3-D Eulerian Up to 1 km spatial
resolution. For the
European domain:
30–50 km/15–
45 km

MM5/WRF: 29/26
vertical layers.
CMAQ: 17–26
vertical layers

http://www.mmm.ucar.edu/mm5;
http://www.mmm.ucar.edu/wrf/users/;
http://www.cmaq-model.org
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Table 1. Continued.

Model name Coupling Country and institution
using it

Dispersion
model

NWP model Type Horizontal grid
spacing

Vertical grid
spacing

Basic reference

MOCAGE Offline Météo-France, Direction de
la Production and Centre
National de Recherches
Météorologiques, France,
Vincent-Henri Peuch
(project leader)

MOCAGE ARPEGE,
ALADIN,
ECMWF

3-D Eulerian Up to 4 nested
domains (two-
ways). 2009 oper-
ational version
covers the globe
at 2◦ resolution,
Europe and Medi-
terraean area
at 0.5◦ and France
at 0.1◦

60 vertical layers
from the surface
to 0.2 hPa

Dufour et al. (2004);
http://www.prevair.org

NAME Offline Atmospheric Dispersion Group,
UK
Paul Agnew

NAME Met Office
Unified
Model

3-D
Lagrangian

NAME: no intrinsic
grid. The Met
Office Unified:
globally at 40 km
resolution and in
a European limited
area configuration
at 12 km

Continuously
variable

http://www.metoffice.gov.uk/research/
modelling-systems/dispersion-model

OPANA Offline Environmental Software and
Modelling Group, Computer
Science School, Technical
University of Madrid,
LHTEE, AUT, NCAR/Pen,
Spain,
Roberto San Jose

OPANA MEMO 3-D Eulerian 0.001–10 km,
domain dimen-
sions: 10–500 km

Cell height:
1–500 m (varying
with height), total
height: up to 10 km

http://atmosfera.lma.fi.upm.es/equal/
equal/show long.htm;
http://artico.lma.fi.upm.es

RCG Offline FU-Berlin, Institute for
Meteorology Germany,
Rainer Stern, Eberhard Reimer,
Andreas Kerschbaumer

REM-
CALGRID

GME 3-D Eulerian ∼1–25 km 5 layers, surface
layer of 25 m,
2 layers above
surface layer and
mixing height and
2 reservoir layers

http://www.trumf.de;
Stern (2003)

SILAM Offline Finnish Meteorological Institute,
Finland,
Mikhail Sofiev

SILAM ECMWF,
HIRLAM,
WRF,
AROME,
. . .

3-D
Lagrangian,
3-D Eulerian

5 km for
Lagrangian and
1 km
(untested: 0.5 km)
for Eulerian

Allows free
selection of output
vertical layers in
several vertical
types

http://silam.fmi.fi/

SKIRON/Dust Online National and Kapodistrian
University of Athens,
Greece,
George Kallos

SKIRON Eta 3-D Eulerian 0.24×0.24
(∼24 km)

38 vertical levels
from the surface up
to 22 km

http://forecast.uoa.gr/dustinfo.php,
Kallos et al. (2006),
Spyrou et al. (2010)

THOR Offline National Environmental
Research Institute,
Denmark,
Jørgen Brandt

DEHM
(UPM,
OSPM)

Eta 3-D Eulerian
(DEHM)
3-D
Lagrangian
(UPM)

DEHM mother
domain:
150×150 km
DEHM first nest:
50 km×50 km
DEHM second
nest:
16.67×16.67 km
UBM: 1 km×1 km
OSPM: 0.001 km

DEHM: 20 layers
up to ∼15 km,
lowest model layer
50 m

http://thor.dmu.dk;
http://www2.dmu.dk/
atmosphericenvironment/thor/index.
htm

WRF/CHEM Online NOAA 2008, Currently under
research application in the
ESMG-Computer Science
School – Technical University
of Madrid (UPM),
Spain,
Roberto San Jose

CHEM WRF 3-D Eulerian European domain:
90 km Nest grid:
Germany (30 km)

23 layers from 35 m
(aprox.) to at top
100 hPa

http://cprm.acd.ucar.edu/Models/
WRF-Chem;
http://ruc.noaa.gov/wrf/WG11/;
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Table 2. Selected main characteristics of the numerical weather prediction models considered.

Model
name

Hydrostatic/
nonhydrostatic

Vertical
coordinate

Reference Cloud
microphysics

Convective
parameterization
scheme

PBL scheme Global or
Limited-area
model

ALADIN Hydrostatic Pressure or
Sigma–
pressure
hybrid

http://www.cnrm.meteo.fr/aladin/ Kessler (1969) Bougeault (1985) First order
turbulence
closure (Louis,
1979; Louis
et al., 1982)

Limited-area

ECMWFIFS Nonhydrostatic Hybrid http://www.ecmwf.int/research/
ifsdocs/

Tiedke (1993) Modified Tiedke
(1989)
scheme (Nordeng
1994)

Modified Louis
et al. (1982)
K -theory
scheme
(Beljaars and
Viterbo 1999)

Global

Eta Nonhydrostatic Eta Mesinger et al. (1988),
Janjic (1990, 1994)

Ferrier
et al. (2002)

Betts–Miller–Janic
and Kain–Fritsch

Mellor-Yamada
2.5-order

Limited-area

GME Hydrostatic Sigma–
pressure
hybrid

Majewski et al. (2002) Kessler-type
scheme (Doms
and Schättler,
1997)

Tiedtke (1989) 2nd order,
Mellor and
Yamada (1974)

Global

HIRLAM Hydrostatic/
nonhydrostatic

Sigma–
pressure
hybrid

http://hirlam.org STRACO
(Soft Transition
Condensation)

STRACO (modified
Kuo scheme),
Rasch and
Kristjánsson
(1998),
Kain–Fritsch

Cuxart
Bougeault
Lacarrere,
order 1.5 TKE
scheme

Limited-area

MEMO Nonhydrostatic Sigma Kunz and Moussiopoulos (1995),
Moussiopoulos et al. (1997)

No moist
processes

No moist
processes

K -theory Limited-area

MM5 Nonhydrostatic Sigma Dudhia (1993), Grell et al. (1995) Various
possible
schemes

Various
possible
schemes

Various
possible
schemes

Limited-area

Unified
Model

Nonhydrostatic Height Cullen et al. (1997),
Davies et al. (2005)

Wilson and
Ballard
extended by
Forbes

Gregory and
Rowntree (1990)

Lock
et al. (2000)

Limited-area
or global

WRF Nonhydrostatic Sigma or
sigma–
pressure
hybrid

Janic et al. (2001), Janic (2003),
Skamarock et al. (2005)

Various
possible
schemes

Various
possible
schemes

Level 2.5 Mellor
and Yamada
Janic, or non
local YSU
scheme

Limited-area

6139

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/5985/2011/acpd-11-5985-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/5985/2011/acpd-11-5985-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://www.cnrm.meteo.fr/aladin/
http://www.ecmwf.int/research/ifsdocs/
http://www.ecmwf.int/research/ifsdocs/
http://hirlam.org


ACPD
11, 5985–6162, 2011

Operational, regional-
scale, chemical

weather forecasting
models in Europe

J. Kukkonen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 3. Brief characterizations of the main physical and chemical components of the CWF
models.

Model name Advection and
convection

Diffusion Dry deposition Wet deposition Chemistry package Aerosol package

ALADIN-
CAMx

Eulerian continuity
equation closed by
K -theory equations
in flux form

Horizontal diffusion:
Smagorinsky
approach. Vertical
diffusion: Louis (1979)
approach (uses the
Richardson number
and the mixing length)

Physical: Separate
resistance models for
gases and aerosols.
Numerical: deposition
velocity as surface
boundary condition for
vertical diffusion

Physical: Seperate scavenging
models for gases and aerosols.
Numerical: Uptake as a function
of rainfall rate, cloud water
content, gas solubility and
diffusivity, PM size

SAPRC-99: 73 species,
211 reactions

Not described

CAMx-
AMWFG

Eulerian continuity
equation closed by
K -theory

Horizontal diffusion
based on
Smagorinsky
approach. Vertical
diffusion coefficients
supplied via input file
(from the meteoro-
logical model)

Separate resistance
models for gases and
aerosols. Numerical:
Deposition velocity
as surface boundary
condition for vertical
diffusion

Separate scavenging models for
gases and aerosols. Numerical:
Uptake as a function of rainfall
rate, cloud water content, gas
solubility and diffusivity, PM size

Carbon Bond (CB-IV) RADM aqueous chemistry scheme,
ISORROPIA gas/aerosol
partitioning scheme, SOAP
scheme for SOA formation,
both Coarse/Fine scheme and
Multi sectional approach.
Options for two variable
(coarse/fine) bulk scheme and
fixed sectional scheme (sections by
user choice) with all microphysics.
16 aersosol chemical species.
(Sulfate, Nitrate, Ammonium,
Water, Anthropogenic SOA,
Biogenic SOA, Polymerized
anthropogenic SOA, Polymerized
biogenic SOA, Sodium, Chloride,
Primary Organic Aerosol, Primary
Elemental Carbon, Fine Other
Primary, Fine Crustal, Coarse
Other Primary, Coarse Crustal)

Enviro-
HIRLAM

Several possibili-
ties: globally and
locally-conserva-
tive schemes for
advection (Bott,
1989; Kaas, 2008).
STRACO convec-
tion and Tiedtke
mass-flux schemes
to convect aerosols
and gases.
Eulerian continuity
equation closed
by K -theory

Vertical diffusion by
native TKE-l scheme
(Cuxart, 2000).
Horizontal diffusion by
the native extra scalar
system. Improved
parameterisation for
urban boundary layer
and mixing height

Separate resistance
models for gases
and aerosols. Three
regimes gravitaton
settling parameterisa-
tions for different size
aerosols

Separate 3-D scavenging
models for gases and
aerosols, and for rain-out and
wash-out with particle size-
dependent parameterisations
(Baklanov and Sørensen, 2001)

Four mechanisms for
gas-phase chemistry can
be used: NWP-Chem
(default scheme),
RADM2, RACM and
an extended version
(includes isoprene and
DMS chemistry)
of CBMZ

Aerosol module comprises
thermodynamic equilibrium model
NWP-Chem-Liquid and an aerosol
dynamics model (Korsholm et al.,
2008). 4 aerosol modules:
modal CAC (default, Gross and
Baklanov, 2004) and MADE
(Ackermann et al., 1998), and
sectional MOSAIC (Zaveri et al.,
2007) and SALSA (on test phase,
Kokkola et al., 2008)

EURAD-RIU fourth order Bott
scheme
(Bott, 1989)

Vertical mixing based
on scaling regimes
(Holtslag et al., 1990)

Deposition velocity
based on landuse
type and season.
Revised parameteri-
zation by Zhang
et al. (2003)

Gas-phase: Henrys law
equilibria for all prognostic
species. Aerosol phase
(Binkovski, 1999): The
accumulation mode particles
form cloud condensation nuclei
and are 100% absorbed into the
cloud water. The Aitken mode
forms interstitual aerosol which
is scavenged by cloud droplets.
The wet removal of aerosol is
proportional to the wet removal
of sulfate

RADM2 (Stockwell et al.,
1990), RACM (Stockwell
et al., 1997), Euro-RADM
(Stockwell and Kley,
1994) – The Euro-RADM
chemical mechanism was
developed to model
European atmospheric
chemistry. It is based
upon the Regional Acid
Deposition Model
mechanism, version 2
(RADM2)

The aerosol dynamics model
MADE (Ackermann et al., 1998),
SORGAM (Schell et al., 2001)
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Table 3. Continued.

Model name Advection and
convection

Diffusion Dry deposition Wet deposition Chemistry package Aerosol package

FARM Horizontal:
Blackman cubic
polynomials
(Yamartino, 1993).
Vertical: hybrid
semi-implicit
Crank-Nicolson/
fully implicit
scheme (Yamartino
et al., 1992)

Horizontal diffusion
based on
Smagorinsky
approach or stability
dependent paramet-
erizations. Different
vertical diffusion
parameterizations
based on ABL-scaling.
Kh and Kz
evaluated by
SURFPRO
pre-processor

Deposition velocity
(from SURFPRO
pre-processor)
depending on land
type, season, surface
meteorology, surface
wetness, by means of
a big leaf resistance
model after Walcek
et al. (1986) and
Wesely (1989)

Precipitation scavenging based
on EMEP (2003)

Two mechanisms
implemented through
KPP chemical pre-
processor (Sandu et al.,
1995): an updated
version of the chemical
mechanism implemented
in the EMEP Lagrangian
Acid Deposition Model
(Hov et al., 1988)
including the treatment
of Persistent Organic
Polluttants (POPs) and
mercury and SAPRC-99
(Carter, 2000). Photolysis
reaction rates estimated
either using simple
look-up tables or an
on-line version of the
Tropospheric Ultraviolet-
Visible Model (TUV,
Madronich, 1987). Cloud
effects on actinic flux
considered

CMAQ aero3 module to
includes aerosol processes: modal
scheme with three modes and
all microphysics. ISORROPIA
and SORGAM models to include
aerosol thermodynamics/
partitioning respectiverly for
inorganic and organic species

LOTOS-
EUROS

Advection following
Walcek (2000). No
explicit convection,
vertical grid follows
pbl from
meteorology

Vertical turbulent
mixing formulation
uses K -diffusion

Resistance approach Scavenging rates depending on
Henry’s law constants for gases
and following Scott (1978) for
particles

Updated CBM-4 with
Carter’s 1-product
isoprene scheme: homo-
and heterogenous
conversion of NO2 to
HNO3. 28 species and
66 reactions, including
12 photolytic reactions

Bulk scheme with possibility for
several size ranges. ISORROPIA,
MARS or EQSAM options for
calcluating equilibrium between
gas and particle phase sulfate,
nitrate, ammonium, water

MATCH Modeled using
a Bott-type
advection scheme
(Bott, 1989). Up to
forth order schems
are implemented in
the horozontal and
up to second order
in the vertical

Parameterized using
three primary
parameters: the
surface friction
velocity, the surface
sensible heat flux and
the boundary layer
height

Modelled using
a resistance
approach. Deposition
schemes with different
degrees of
sophistication are
available

Assumed to be proportional to
the precipitation intensity using
species-specific scavenging
coefficients. For particles,
several different schemes
are avalable

Extended EMEP MSC-W
model chemistry
(Simpson et al., 1993).
Aqueous-phase oxidation
is implemented following
Berge (1993). The
formation of ammonium
sulfate and -nitrate is
modelled following Hov
et al. (1994). 110
thermal, 28 photo-
chemical, 2 aqueous-
phase, 5 aerosol
reactions and 4 gas-
phase aqueous-phase
and aerosol equlibria
between 60 chemical
components

Bulk scheme with several
non-interacting size ranges.
Equilibrium between particle
and gas phase
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Table 3. Continued.

Model name Advection and
convection

Diffusion Dry deposition Wet deposition Chemistry package Aerosol package

MM5-CAMx MM5: Vertical
advection of
moisture and
temperature are
resolved by
applying linear
interpolation
methods.
Convection in
cumulus clouds
is parameterized
with the
Kain–Fritsch 2
parameterization.
CAMx: Eulerian
continuity equation
closed by K -theory

MM5: MRF Planetary
Boundary Layer (PBL)
scheme.
CAMx: Horizontal
diffusion based on
Smagorinsky
approach. Vertical
diffusion coefficients
supplied via input file
(from the meteor-
ological model)

CAMx: Physical:
Separate resistance
models for gases and
aerosols. Numerical:
Deposition velocity
as surface boundary
condition for vertical
diffusion

Separate scavenging models for
gases and aerosols. Numerical:
Uptake as a function of rainfall
rate, cloud water content, gas
solubility and diffusivity, PM size

CAMx: Carbon Bond
(CB-IV)

RADM aqueous chemistry
algorithm, ISORROPIA
inorganic aerosol
thermodynamics/partitioning,
SOAP scheme for SOA
formation. Options for two
variable (coarse/fine) bulk scheme
and fixed sectional scheme
(sections by user choice) with
all microphysics. 16 aersosol
chemical species (sulfate, nitrate,
ammonium, water, anthropogenic
SOA, biogenic SOA, polymerized
anthropogenic SOA, polymerized
biogenic SOA, sodium, chloride,
primary organic aerosol, primary
elemental carbon, fine other
primary, fine crustal, coarse
other primary, coarse crustal)

MM5-
CHIMERE

MM5: Based on
a finite difference
formulation of the
time-dependent
Navier-Stokes
equations.
CHIMERE:
3 advection
schemes: The
Parabolic
Piecewise Method,
the Godunov
scheme and the
simple upwind
first-order scheme

MM5: Bulk PBL, high
resolution Blackadar
PBL, Burk. Thompson
PBL, Eta PBL, MRF
PBL, Gayno-Seaman
PBL, Pleim-Chang
PBL. CHIMERE:
Vertical turbulent
mixing takes place
only in the boundary-
layer. The formulation
uses K -diffusion,
without counter-
gradient term

CHIMERE:
Considered for model
gas species and is
parameterized as
a downward flux out
of the lowest model
layer. The deposition
velocity is described
through a resistance
analogy (Wesely
1989)

MM5: Nonconvective
precipitation scheme, warm
rain, simple ice, mixed-phase,
Goddard microphysics, Reisner
graupel, Schultz microphysics.
CHIMERE: follows the scheme
proposed bu Loosmore (2004)

CHIMERE: Offers the
option to include
different gas phase
chemical mechanisms.
MELCHIOR1 (Lattuati,
1997): more than 300
reactions of 80 gaseous
species. The hydro-
carbon degradation is
fairly similar to the EMEP
gas phase mechanism.
MELCHIOR2: 44 species
and about 120 reactions
is derived from
MELCHIOR (Derognat,
2003), following the
concept of chemical
operators (Carter, 1990)

Sectional with 6 size bins
(each bin internally mixed). All
microphysical processes included.
7 species (primary particle
material, nitrate, sulfate,
ammonium, biogenic secondary
organic aerosol (SOA),
anthropogenic SOA and water)

MM5/WRF-
CMAQ

Several
possibilities.
Normally Global-
mass conserving
scheme. Vertical
difussion is mainly
done with the
Asymmetric
Convective model
(ACM2) for MM5
and the Yonsei
University (YSU)
PBL parameteriza-
tion for WRF

PBL scheme and
diffussion (MRF PBL);
surface scheme: Noah
Land Surface Scheme
and Monin Obukhov
surface layer scheme

Physical: Separate
resistance models for
gases and aerosols.
Numerical:
Deposition velocity as
surface boundary
condition for vertical
diffusion

Physical: Seperate scavenging
models for gases and aerosols.
Numerical: Uptake as a function
of rainfall rate, cloud water
content, gas solubility and
diffusivity, PM size

CB04 and CB05; Also
RADM chemistry. It
includes cloud and
aerosol chemistry

Modal scheme with three modes
and all microphysics. Aerosol
species: elemental and organic
carbon, dust, and other species
not further specified. Secondary
species considered are sulfate,
nitrate, ammonium, water, and
secondary organics from
precursors of anthropogenic and
biogenic origin. Possibilities to run
the aerosol MADRID scheme
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Table 3. Continued.

Model name Advection and
convection

Diffusion Dry deposition Wet deposition Chemistry package Aerosol package

MOCAGE Advection is based
upon the semi-
lagrangian scheme
of (Williamson and
Rash, 1989) with
global mass
conversation
imposed, while
convection is
parameterised
using (Bechtold
et al., 2001). See
details and
evaluation in
(Josse et al.,
2004)

K -diffusion approach,
based upon
(Louis, 1979)

Resistance approach:
for gases, it is based
upon (Wesely, 1989)
with refinements for
stomatal resistance
(Michou et al., 2004);
for aerosol, the
approach is described
in (Nho-Kim et al.,
2004)

For scavenging by large-scale
precipitation and below
convective cloud, the
parameterisation is based upon
(Giorgi and Chameides, 1986),
with a special treatment for snow
flakes. For scavenging within
convective clouds, it is done
within the convective
paramaterisation as described
in (Mari et al., 2000)

Several options are
available. In the
operationnal version,
the scheme is a merge
from the schemes RACM
(Stockwell et al., 1997)
and REPROBUS (Lefevre
et al., 1994), thus
offering a comprehensive
representation of both
tropospheric and
stratospheric chemistry.
The scheme comprises
118 species for a total of
over 300 homogeneous
and heterogeneous
chemistry reactions

Aerosol is described using a bulk
approach with size bins (typically
5 to 20 bins per species).
Evaluation is currently available
for black carbon
(Nho-Kim et al., 2005),
dust (Martet et al., 2009) and
sulfate (Ménégoz et al., 2009)

NAME NAME does not
have its own
convection
scheme.
It obtains advection
ascheme from the
UK Met. Office’s
numerical weather
prediction model,
the Unified Model
(Cullen, 1993)

Modelled using
random walk
techniques.
Parameterised profiles
of turbulence param-
eters such as velocity
variances and
Lagrangian time
scales are employed.
Normally a Gaussian
scheme is used.
However for
convective conditions
a skewed turbulence
scheme is available

Uses a resistance
analogy approach
and sedimentation of
heavy particles is also
included

Based on parameterised
scavenging coefficients and
differs according to precipitation
type (convective, dynamic)

Based on the scheme for
the STOCHEM model.
40 advected tracers+18
non-advected
140 reactions+23
photolytic reactions
16 emitted species

A mass based scheme
incorporating sulphate, nitrate,
ammonium, and secondary
organic aerosols. Additional
scheme exist for sea salt (2 size
bias) and mineral dust (6 size bias)

OPANA Piecewise
parabolic method
(PPM) which
is a monotonic
scheme with
geometric non-
linear adjustments
to the parabolic
concentration
distributions

Two convective
boundary layer
schemes: Blackadar
and ACM. Local
diffusion, vertically
continuous
integration, smooth
transition from stable
to convective and
faster matrix solver.
Updated eddy
diffusion scheme

Chemical gases:
Wesely (1989).
Aerosol chemistry:
Binkowski and
Shankar (1995)
approach. These
schemes are based
on the resistance
approach which
assumes a canopy,
aerodynamical and
bulk resistance

Physical: Seperate scavenging
models for gases and aerosols.
Numerical: Uptake as a function
of rainfall rate, cloud water
content, gas solubility and
diffusivity, PM size

The CBM-IV chemical
mechanism in short and
long modes are included
in the system. The RADM
model and the SAPRC-99
chemical scheme are also
included. These schemes
simulate the chemical
reactions in the atmosfere
for organic and also
inorganic reactions

Modal scheme with three modes
and all microphysics. Aerosol
species: elemental and organic
carbon, dust, and other species
not further specified. Secondary
species considered are sulfate,
nitrate, ammonium, water, and
secondary organics from
precursors of anthropogenic and
biogenic origin. Possibilitirs to run
the aerosol MADRID scheme

RCG Walcek (2000).
The number of
steps within the
advection scheme
is chosen such that
the courant
restriction
is fulfilled

Vertical turbulent
mixing formulation
uses K -diffusion.
Stable and convective
boundary layer
diffusion coefficients
based on PBL scaling
regimes. In addition:
mixing by use of time
and space dependent
coordinate based on
mixing height

Resistance approach
(Erisman et al., 1994).
Gases: function of
species dependent
Henry constant and
precipitation rate.
Particles: Below-cloud
simplescavenging
coefficient approach
with identical
coefficients for all
particles

Gases: function of species
dependent Henry constant and
precipitation rate. Particles:
Below-cloud simplescavenging
coefficient approach with
identical coefficients for all
particles

Gas phase: updated
CBM-4 with Carter’s
1-product isophere
scheme: homo- and
heterogenous conversion
of NO2 to HNO3,
aqueous phase
conversion of SO2 to
H2SO4 through oxidation
by H2O2 and O3,
equilibrium concentration
fot SO2, H2O2 and O3
from Henry constants

ISORROPIA. Bulk equilibrium
scheme. species: mineral coarse
between 2.5 µm and 10 µm,
primary aerosol smaller than
2.5 µm, primary elemental carbon,
primary organic carbon, secondary
organic aerosols, sulfate, nitrate,
ammonium, sea-salt
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Table 3. Continued.

Model name Advection and
convection

Diffusion Dry deposition Wet deposition Chemistry package Aerosol package

SILAM Lagrangian kernel
uses the iterative
advection of Eerola
(1990). Eulerian
kernel is built
on the basis of
Galperin (2000)

Lagrangian: assumes
the well-mixed ABL
and fixed random-
walk parameters in
the free troposphere.
Exchange between
the ABL and tropo-
sphere takes place
due to variation of
the ABL height.
Eulerian: follows
the K -closure with
approach of
Gernikhovich
et al. (2004) and
Sofiev et al. (2010a)
for Kz evaluation

Varies for different
chemical schemes
but generally is based
on resistive analogy
with certain simplifi-
cations or extensions.
Aerosols: both gravi-
tational and diffusional
paths are considered
with the sedimentation
treated via Stokes
terminal velocity

Follows the scavenging coeffi-
cient approach, distinguishing
between the in- and sub-cloud,
as well as rain-, snow-types of
scavenging

1. Acid basic transfor-
mations 2. CB-4 3. Sox
module 4. Radioactive
decay of up to ∼500
nuclides 5. Toxic species
6. Aerosols 7. Natural
birch pollen 8. Sea salt
9. Passive tracer

Two schemes: bulk and ADB
(Aerosol Dynamics Basic –
research mode only). Both
schemes use the user-defined
set of bins. Bulk scheme allows
treatment of any chemically inert
aerosol. ADB scheme distin-
guishes between SIA, sea salt,
dust, primary PM – in soluble and
insoluble phases

SKIRON/Dust Horizontal: The
Eta/NCEP model
scheme for advec-
tion of a passive
substance (Janjic,
1997). Vertical:
The scheme of
Van Leer (1977)

A 2nd order diffusion
scheme is used
for lateral diffusion
by utilizing the
Smagorinsky-type
horizontal diffusion
coefficient modified by
the presence of the
model turbulent kinetic
energy term (Janjic,
1990)

Surface deposition of
particles occurs via
diffusion, impaction,
and/or gravitational
settling using the
resistance approach
of Slinn and Slinn
(1980)

Wet deposition of particles occur
above and below the clouds as
described by Seinfield and
Pandis (1998)

No chemistry Bulk scheme for dust

THOR Time integration
for the advection
term is performed
with a predictor-
corrector scheme
with several
correctors (Zlatev,
1995)

K -theory, constant
K in horizontal, and
vertical Kz based
on Monin-Obukhov
similarity theory for
the surface layer,
extended to the whole
mixing layer

DEHM: velocities of
the species are based
on the resistance
method

DEHM: parameterised by
a simple scavenging ratio
formulation with different
in-cloud and below-cloud
scavenging

A chemical scheme
similar to the EMEP
scheme with 60 species
and 120 chemical
reactions is included
in the model

DEHM: Bulk scheme. Three of
the species are primary particu-
lates (PM25, PM10, TSP). Further-
more sea salt is implemented in the
model

WRF/CHEM Several possibil-
ities. Normally
Global-mass con-
serving scheme.
Vertical difussion
is mainly done
with the Yonsei
University PBL
parameterization

PBL scheme with the
Yonsei University
parameterization

Physical: separate
resistance models for
gases and aerosols.
Numerical: deposition
velocity as surface
boundary condition for
vertical diffusion

Physical: separate scavenging
models for gases and aerosols.
Numerical: uptake as a function
of rainfall rate, cloud water
content, gas solubility and
diffusivity, PM size

CB05, CBMZ and RADM
chemical schemes

Option for sectional (MOSAIC,
8 bins) and modal (MADE)
aerosol models

6144

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/5985/2011/acpd-11-5985-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/5985/2011/acpd-11-5985-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 5985–6162, 2011

Operational, regional-
scale, chemical

weather forecasting
models in Europe

J. Kukkonen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 4. Selected main characteristics of the chemical submodels that are included in the CWF
models. ND=no data found.

Chemical
sub-model

Dispersion models Chemical species Photolysis rates Aqueous-phase References

CBM-IV
(CB-IV)

CAMx
CMAQ
LOTOS-EUROS
OPANA
RCG

33 compounds
81 reactions

12 reactions. For most of the species
the clear sky photolysis rates are
calculated according to the Roeths
flux algorithm

ND Gery et al. (1989)

MELCHIOR CHIMERE Extended mechanism:
80 compounds
320 reactions
(26 inorganic)
Reduced mechanism:
44 compounds
133 reactions
(26 inorganic)

22 photolysis reactions
Photolysis rates calculated under clear
sky conditions as a function of height
and attenuated by cloudiness

Aqueous oxidation
of SO2 by O3,
H2O2, NO2 and O2
catalyzed by metal
ions

http://www.lmd.polytechnique.fr/chimere
Schmidt et al. (2001)

ISORROPIA CAMx
CHIMERE
CMAQ
LOTOS-EUROS
RCG

22 species
17 equilibrium reactions

ND ND Nenes et al. (1998a,b)
New version:
http://nenes.eas.gatech.edu/ISORROPIA/
Fountoukis and Nenes (2007)

NWP-Chem Enviro-HIRLAM 17 (28) advected species
27 (32) gas-phase
reactions

4 photolysis reactions Simplified liquid-
phase equilibrium
mechanism NWP-
Chem-Liquid with
13 reactions

Korsholm et al. (2008)

RADM2
(RADM)

CAMx
CHEM
CMAQ
Enviro-HIRLAM
EURAD
OPANA
WRF/CHEM

63 compounds
156 reactions
(38 inorganic)

21 photolysis reactions
The photolysis module uses a radiative
transfer model. This module calculates
photolysis frequencies that considers
changes in the radiation with height
and changes in air composition such
as O3; aerosols and water vapor

Stockwell et al. (1990)

RACM Enviro-HIRLAM
EURAD
MOCAGE

77 compounds
214 reactions

23 photolysis reactions,
procedure the same as in RADM2

ND Stockwell et al. (1997)

SAPRC-99 Aladin-CAMx
CMAQ
FARM
OPANA

80 compounds
214 reactions
(48 inorganic)
16 radicals

24 photolysis reactions
Rate constants must be calculated
from their corresponding absorption
cross sections and quantum yields
given the spectrum and intensity of
the sunlight or other light source in
the simulation

ND SAPRC-99:
http://www.engr.ucr.edu/∼carter/SAPRC99.htm

SAPRC-07:
http://www.engr.ucr.edu/∼carter/SAPRC

UNI-OZONE EMEP
MATCH(EMEP-
MSC-W)

71 compounds
123 reactions
(22 inorganic)
24 radicals
(Ozone concentrations
from 2-D global model
scaled by observed total
ozone colums)

22 photolysis reactions
J-values calculated over clear sky
conditions and for two predefined
clouds

Aqueous oxidation
of SO2 by O3, H2O2
and O2 catalyzed
by metal ions

http://www.emep.int/OpenSource/index.html
Simpson et al. (2003)
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Table 5. Comparison studies of the various chemical sub-models.

References CBM-IV ISORROPIA MELCHIOR RADM2 SAPRC- UNI- Other not discussed
(CB-IV) (RADM) 99 OZONE chemical submodules

(EMEP)

Anderson-Sköld and Simpson (1999) X X
Ansari and Pandis (1999a,b) X X
Cuvelier et al. (2007) X X X X X X
Dodge (2000) X X X X
Faraji et al. (2008) X X
Gross and Stockwell (2003) X X
Jimenez et al. (2003) X X X X X
Kuhn et al. (1998) X X X X
Luecken et al. (2008) X X X
Sarwar et al. (2008) X X
Tilmes et al. (2002) X X (X) X
van Loon et al. (2007) X X X X X
Vautard et al. (2007) X X X X X X
Yu et al. (2005) X X

N.B. EMEP refers to older versions of the EMEP model chemistry.
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Table 6. The treatments for aerosols in the CWF models: size distribution, chemical composi-
tion and aerosol microphysics.

Model Size distribution representation Chemical components in particle phase Aerosol microphysics
Bulk Modal Sectional Sea Dust Elem. C Org. C Sulfate Nitrate Ammonium Water Biog. Anthr. Nucl. Cond. Coag. Dep.

salt SOA SOA

ALADIN-CAMx X X X X X X X X X X X X X X X X

CAMx-AMWFG X X X X X X X X X X X X X X X X

Enviro-HIRLAM X X X X X X X X

FARM X X X X X X X X X X X X X X X

LOTOS-EUROS X X X X X X X X X X X

MATCH X X X X X X X X X X

MM5-CAMx X X X X X X X X X X X X X X X X

MM5-CHIMERE X X X X X X X X X X X X X X X

MM5-CMAQ X X X X X X X X X X X X X X X

NAME X X X X X X X X X X X X

OPANA X X X X X X X X X X X X X X X

RCG X X X X X X X X X X X X

SILAM X X X X X X X X X X X X X X

SKIRON/Dust X X X

THOR X X X

WRF/CHEM X(MADE) X(MOSAIC) X X X X X X X X X X X X X X
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Table 7. References or brief characterizations of the treatments for dry and wet deposition in
the CWF models.

Model Canopy Aerosol settling In-cloud scavenging Below-cloud scavenging
name Resistance velocity and

deposition

CAMx Wesely (1989) Slinn and Slinn (1980) Different scavenging coefficients for gases and
aerosols following Seinfeld and Pandis (1998);
precipitating water, snow and ice considered

Different scavenging coefficients for gases
and aerosols following Seinfeld and Pandis
(1998); precipitating water, snow and ice
considered

Enviro-
HIRLAM

Wesely (1989) and
Binkowski (1999)

Näslund and Thaning
(1991)

Scavenging coefficients for gases following
Seinfeld and Pandis (1998); in-cloud scavenging
of aerosols dependent on the aerosol radius and
rain rate (Baklanov and Sørensen, 2001)

Scavenging coefficients for gases following
Seinfeld and Pandis (1998); below-cloud
scavenging of aerosols dependent on the
aerosol radius and rain rate (Baklanov
and Sørensen, 2001)

EURAD-
RIU

Walcek et al. (1986) Size dependent
resistance model and
gravitational settling
depending on the
three aerosol
lognormal modes

Different scavenging coefficients based on
Henrys law equilibria for each specie; aerosol
mode dependent scavenging (Binkowski, 1999)

Different scavenging coefficients based on
Henrys law equilibria for each specie; aerosol
mode dependent scavenging (Binkowski, 1999)

FARM Wesely (1989) Seinfeld and Pandis
(1998); Binkowski and
Shankar (1995)

Gas scavenging as in EMEP Unified model
(Simpson et al., 2003)

Gas scavenging as in EMEP Unified model
(Simpson et al., 2003); aerosols following Scott
(1978)

LOTOS-
EUROS

Erisman et al. (1994) Erisman and Draaijers
(1995)

Neglected at start of paper writing, now via
scavenging coefficients

Gases: scavenging rates depending on Henry’s
law constant and precipitation intensity (Simpson
et al., 2003); aerosols following Scott (1978)

MATCH Erisman et al. (1994)
Bartnicki et al. (2001)

Seinfeld and Pandis
(1998)

Ozone, H2O2 and SO2 in-cloud scavenging is
calculated by assuming Henry’s law equilibrium
in the clouds; for sulfate particles, in-cloud
scavenging is assumed to be 100% effective

For sulfate particles Berge (1993); neglected
for ozone, H2O2 and SO2; for other species
proportional to the precipitation intensity and
a species-specific scavenging coefficient

CHIMERE Erisman et al. (1994) Seinfeld and Pandis
(1998); Zhang
et al. (2001); Giorgi
(1986); Peters and
Eiden (1992)

Dissolution of gases in cloud droplets (Seinfeld
and Pandis, 1998); aerosol nucleation (Tsyro,
2002; Guelle et al., 1998)

Dissolution of gases in precipitating drops
(Mircea and Stefan, 1998); scavenging by
raining drops (Loosmore and Cederwall, 2004)

CMAQ RADM (Wesely,
1989); M3Dry (Pleim
et al., 2001)

Binkowski and
Shankar (1995)

Wet deposition algorithms taken from RADM
(Chang et al., 1987); wet deposition of
chemical species depending on precipitation
rate and cloud water concentration (Roselle
and Binkowski, 1999); accumulation and
coarse mode aerosols completely absorbed by
cloud and rain water, Aitken mode aerosols
slowly absorbed into cloud and rain water

Wet deposition algorithms taken from RADM
(Chang et al., 1987); wet deposition of
chemical species depending on precipitation
rate and cloud water concentration (Roselle
and Binkowski, 1999); accumulation and
coarse mode aerosols completely absorbed by
cloud and rain water, Aitken mode aerosols
slowly absorbed into cloud and rain water

MOCAGE ISBA (Interface
Soil Biosphere
Atmosphere) scheme
(Michou et al., 2004)

Nho-Kim et al. (2004) Convective (Mari et al., 2000) and stratiform
precipitation (Giorgi and Chameides, 1986)

Giorgi and Chameides (1986)

NAME Resistance analogy
incorporating canopy
resistance

Resistance analogy;
particles removed by
sedimentation and
impaction with the
surface

Rain and snow scavenging coefficients for large-
scale and convective precipitation (Maryon et al.,
1996)

Rain and snow scavenging coefficients for large-
scale and convective precipitation (Maryon et al.,
1996)
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Table 7. Continued.

Model Canopy Aerosol settling In-cloud scavenging Below-cloud scavenging
name Resistance velocity and

deposition

OPANA Wesely (1989) Binkowski and
Shankar (1995)

wet deposition algorithms taken from RADM
(Chang et al., 1987); wet deposition of
chemical species depending on precipitation
rate and cloud water concentration (Roselle
and Binkowski, 1999); accumulation and coarse
mode aerosols completely absorbed by cloud
and rain water, Aitken mode aerosols slowly
absorbed into cloud and rain water

Wet deposition algorithms taken from RADM
(Chang et al., 1987); wet deposition of
chemical species depending on precipitation
rate and cloud water concentration (Roselle
and Binkowski, 1999); accumulation and coarse
mode aerosols completely absorbed by cloud
and rain water, Aitken mode aerosols slowly
absorbed into cloud and rain water

RCG Erisman et al. (1994) From Stoke’s law
(Pleim et al., 1984)

neglected Species dependent scavenging coefficients for
gases from Henry constant and precipitation rate
(Seinfeld and Pandis, 1998); scavenging
coefficient identical coefficients for all particles

SILAM Hicks et al. (1987);
Lindfors et al. (1991)

From Stoke’s law Water and snow scavenging from large-scale
and convective precipitation (Smith and Clark,
1989; Jylhä, 1991)

Water and snow scavenging from large-scale
and convective precipitation (Smith and Clark,
1989; Jylhä, 1991)

SKIRON/
Dust

– Slinn and Slinn (1980),
Kumar et al. (1996)

Constant scavenging coefficient (Seinfeld and
Pandis, 1998)

Constant scavenging coefficient (Seinfeld and
Pandis, 1998)

THOR Wesely and Hicks
(1977)

Gravitational settling
velocity given by
Stokes equation
(Hanna et al., 1991)

Rain and snow scavenging coefficients for large-
scale and convective precipitation (Maryon et al.,
1996)

Rain and snow scavenging coefficients for large-
scale and convective precipitation (Maryon et al.,
1996)

WRF/
CHEM

Wesely (1989) and
Erisman et al. (1994)

Slinn and Slinn (1980),
Pleim et al. (1984)

In-cloud wet removal of aerosol particles involves
removal of the cloud-borne aerosol particles
collected by rain, graupel and snow, using the
same first-order rate that cloud water is
converted to precipitation. For trace gases,
the same removal rate is applied to the fraction
of each gas that is dissolved in cloud water

Below-cloud wet removal of aerosol particles by
impaction scavenging via convective brownian
diffusion and gravitational or inertial capture.
Irreversible uptake of H2SO4, HNO3, HCl, NH3
and simultaneous reactive uptake of SO2, H2O2.
(Easter, 2004)
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Table 8a. The gaseous natural emissions accounted for in the CWF models, as well as their
calculation methodologies.

Model name Gaseous emissions
Vegetation Soil Volcanoes Oceans Animals

(wild and domestic)
Component Method Component Method Component Method Component Method Component Method

ALADIN-
CAMx

Isoprene, 2-Methyl-3-buten-2-ol,
Methanol, Ethene, Propene,
Ethanol, Acetone, Hexanal,
Hexenol, Hexenylacetate,
Formaldehyde, Acetaldehyde,
Butene, Ethane, Formic acid,
Acetic acid, Butenone, other
reactive VOCs and
Monoterpenes

SMOKE emission model
(Houyoux and Vukovich,
1999) using the Biogenic
Emissions Inventory
System (BEIS3)
(http://www.epa.gov/
asmdnerl/biogen.html);
Guenther et al. (1994,
2000)

Nitric oxide,
Carbon
monoxide

SMOKE emission
model (Houyoux
and Vukovich,
1999) using the
BEIS3 mechanism
(http://www.epa.
gov/asmdnerl/
biogen.html);
Guenther
et al. (2000)

Not included Not included Not included Not included Not included Not included

CAMx-
AMWFG

Isoprene Global Emissions Inventory
Activity (GEIA) database
(www.geiacenter.org)

Ammonia Global Emissions
Inventory Activity
(GEIA) database
(www.geiacenter.
org)

Sulphur
dioxide

Global
Emissions
Inventory
Activity (GEIA)
database (www.
geiacenter.org).
Continuously
erupting
volcanoes

Ammonia Global
Emissions
Inventory
Activity (GEIA)
database (www.
geiacenter.org)

Ammonia Global
Emissions
Inventory
Activity (GEIA)
database (www.
geiacenter.org)

ENVIRO-
HIRLAM

ND ND Not included Not included Not included Not included Not included Not included Not included Not included

FARM Isoprene, Monterpenes Guenther et al. (1993,
1995)

Nitric oxide Willliams
et al. (1992)

Not included Not included Not included Not included Not included Not included

LOTOS-
EUROS

Isoprene, Monterpenes Guenther et al. (1993,
1995)

Not included Not included Not included Not included Not included Not included Not included Not included

MATCH Isoprene Simpson et al. (1995)
(E-94 methodology);
Guenther et al. (1993)

Not included Not included Sulphur
dioxide,
sulphate

EMEP expert
emission
inventory (http://
www.emep.int/)

Not included Not included Ammonia EMEP expert
emission
inventory (http://
www.emep.int/)

MM5-CAMx Isoprene, Monoterpenes, other
VOCs

Emission model developed
by the Aristotle University
of Thessaloniki and the
National and Kapodistrian
University of Athens
(Poupkou et al., 2010;
Symeonidis et al., 2008;
Guenther et al., 1995)

Not included Not included Not included Not included Not included Not included Not included Not included

MM5-
CHIMERE

Isoprene, A-pinene, B-pinene,
Limonene, Ocimene

MEGAN emission model
(Guenther et al., 2006)

Nitric oxide Stohl et al. (1996) Not included Not included Not included Not included Not included Not included

MM5-CMAQ Isoprene, Monoterpenes BIOEMI emission model
developed by the Technical
University of Madrid
(Guenther et al., 1993,
1995; Schoenemeyer et al.,
1997; Steinbrecher, 1997)

Not included Not included Not included Not included Not included Not included Not included Not included

MOCAGE Isoprene, Monoterpenes, other
VOCs

Guenther et al. (1993,
1995)

Nitrogen
oxides,
Carbon
monoxide

Emmons and
Lamarque (NCAR),
personnal
communication
(2006)

Sulphur
dioxide

Andres and
Kasgnoc (1998)

Carbon
monoxide,
Methane

Emmons and
Lamarque
(NCAR),
personnal
communication
(2006)

Not included Not included

NAME No natural emissions
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Table 8a. Continued.

Model name Gaseous emissions
Vegetation Soil Volcanoes Oceans Animals

(wild and domestic)
Component Method Component Method Component Method Component Method Component Method

OPANA Isoprene, Monterpenes BIOEMI emission model
developed by the
Technical University
of Madrid (Guenther et al.,
1995; Schoenemeyer et al.,
1997; Steinbrecher, 1997)

Not included Not included Not included Not included Not included Not included Not included Not included

RCG Isoprene, Monoterpenes, other
VOCs

Simpson et al. (1995)
(E-94 methodology);
Guenther et al. (1993);
CORINAIR (CORe
INventory of AIR emissions)
emission handbook

Nitric oxide Simpson
et al. (1995)

Not included Not included Not included Not included Not included Not included

SILAM Isoprene, Monterpenes Guenther et al.
(1993, 1995)

Ammonia EMEP/GEMS/
GEIA/RETRO
emission
invemtories

Sulphur
oxides

EMEP/GEMS/
GEIA/RETRO
emission
invemtories

Not included Not included Ammonia EMEP/GEMS/
GEIA/RETRO
emission
invemtories

SKIRON/
Dust

Not included Not included Not included Not included Not included Not included Not included Not included Not included Not included

THOR Isoprene Global Emissions Inventory
Activity (GEIA) database
(www.geiacenter.org)

Nitrogen
oxides

Global Emissions
Inventory Activity
(GEIA) database
(www.geiacenter.
org)

Not included Not included Not included Not included Ammonia Global
Emissions
Inventory
Activity (GEIA)
database (www.
geiacenter.org)

WRF/CHEM Isoprene, Monoterpenes, other
VOCs

Biogenic emission module
based on Guenther
et al. (1993, 1994), Hahn
et al. (1994),
Simpson et al. (1995),
Schoenemeyer et al. (1997)
OR the Biogenic Emissions
Inventory System (BEIS3)
(Vukovich and Pierce,
2002)

Nitric oxide Simpson
et al. (1995)

Not included Not included Not included Not included Not included Not included
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Table 8b. The particulate emissions accounted for in the CWF models, as well as their calcu-
lation methodologies.

Model name Particulate emissions
Dust Sea salt Pollen
Methodology Methodology Methodology

ALADIN-CAMx Not included Not included Not included

CAMx-AMWFG Desert dust fluxes from the SKIRON/Dust
modelling system

Module developed by the AM&WF Group
at the National and Kapodistrian
University of Athens (de Leeuw et al.,
2000; Gong et al., 2002; Gong, 2003;
Zhang et al., 2005; Shankar et al., 2005;
Astitha and Kallos, 2009)

Not included

ENVIRO-
HIRLAM

Not included Not included Birch pollen emission module developed
by the Danish Meteorological Institute
and the Finish Meteorological Institute
(Mahura et al., 2009)

FARM Vautard et al. (2005) Zhang et al. (2005b) Not included

LOTOS-
EUROS

Not included Monahan et al. (1986); TNO (2005) Not included

MATCH Only anthropogenic: Andersson
et al. (2009)

Foltescu et al. (2005) Not included

MM5-CAMx Not included Not included Not included

MM5-
CHIMERE

Vautard et al. (2005), Marticorena and
Bergametti (1995), Menut et al. (2007)

Monahan et al. (1986) Not included

MM5-CMAQ Not included Not included Not included

MOCAGE Martet et al. (2009) Gong et al. (1997) Not included

NAME No natural emissions

OPANA Not included Not included Not included

RCG Loosmore and Hunt (2000), Claiborn
et al. (1998)

Gong et al. (1997) Not included

SILAM Not included Module developed in the Finish
Meteorological Institute based on
Monahan et al. (1986) and Martensson
et al. (2003)

Modules developed in the Finish
Meteorological Institute for birch and
grass pollen (Sofiev et al., 2006b)

SKIRON/
Dust

Dust module developed by the AM&WF
Group at the National and Kapodistrian
University of Athens (Marticorena and
Bergametti, 1995; Nickovic et al., 2001;
Zender et al., 2003; Pérez et al., 2006)

Not included Not included

THOR Not included Not included Not included

WRF/CHEM Not included Not included Not included
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Table 9. Details on the grid spacings and coordinate systems of the different CWF models.

Model name Coupling Type/Coordinate Horizontal grid spacing Vertical grid spacing
system

ALADIN-CAMx Offline 3-D Eulerian
Lambert Conformal
Arakawa C grid

28.9 km for the mother grid (Central Europe)
9.63 km for the inner modeling domain (Austria and
surroundings)

15 vertical layers (30 m to 2.5 km). The highest grid
spacing (about 30 m) is achieved in the lowest
5 levels (up to about 350 m)

CAMx-AMWFG Offline 3-D Eulerian
Curvilinear geodetic latitude/
longitude
Arakawa C grid

0.24◦ ×0.24◦ (∼24 km)
The area covered is the Mediterranean region,
Europe (up to 55◦ N), North and Central Africa,
Turkey and part of the Arabian Peninsula

22 layers up to 8 km with variable spacing
First layer from the ground at 50 m

ENVIRO-
HIRLAM

Online 3-D Eulerian
rotated latitude-longitude
Arakawa C grid

5 km (pollen forecast) Hybrid terrain-following sigma and pressure coordinate
system
40 layers, grid spacing from 30 m to 500 m

EURAD-RIU Offline 3-D Eulerian Europe: 125 km; Central Europe: 25 km,
German States: 5 km

23 layers from 40 m to 2000 m at top (100 hPa)

FARM Offline 3-D Eulerian
UTM (Universal Transverse
Mercatore);
polar stereographic;
latitude/longitude;
mercator

12 km (Italian Peninsula) Terrain following coordinates with variable vertical spacing
up to 10 km

LOTOS-
EUROS

Offline 3-D Eulerian
Normal latitude-longitude

0.5◦ ×0.25◦ (Europe) (∼25×25 km)
0.25◦ ×0.125◦ (Netherlands) (∼12×12 km)
0.125◦ ×0.0625◦ (Netherlands) (∼6×6 km)

Dynamic mixing layer approach
4 layers (surface layer of 25 m,
mixing height layer and 2 reservoir layers
up to 3.5 or optionally 5 km)

MATCH Offline 3-D Eulerian 44 km (MATCH-HIRLAM) (Europe)
0.5◦ (∼50 km) (MATCH-ECMWF) (Europe)

Usually depending on met. model. At present for HIRLAM:
domain height ∼8 km, lowest level at ∼60 m

MM5-CAMx Offline 3-D Eulerian
Lambert conformal

30 km for Europe (mother grid)
10 km for the Balkan Peninsula and
2 km for Athens (nested grids)

CAMx: 15 vertical layers, 1st layer height 20 m, top at 7 km.
MM5: 29 vertical sigma-levels, top at 100 mbar

MM5-
CHIMERE

Offline 3-D Eulerian 50 km (Western Europe)
10 km (Portugal)

In the vertical there are 8 layers up to 500 hPa with the
surface layer located at 50 m

MM5-CMAQ Offline 3-D Eulerian
Lambert conformal

50 km (Europe)
27 km (Iberian Peninsula)

15 layers up to 100 hPa

MOCAGE Offline 3-D Eulerian PREVAIR: 2◦ (∼200 km) (global); 0.5◦ (∼50 km) (Europe
and Mediterraean area); 0.1◦ (∼10 km) (France)
GEMS, MACC: 2◦ (global); 0.2◦ (Europe)
Currently testing: 0.025◦ (France)

Hybrid (sigma, P) coordinate system with currently
60 levels from the surface up to 1 or 0.1 hPa
(7–8 levels in the PBL with a first layer of 20 to 40 m)

NAME Offline 3-D Lagrangian No intrinsic grid.
The Met Office Unified: globally at 40 km resolution and
in a European limited area configuration at 12 km

Continuously variable

OPANA Offline 3-D Eulerian
UTM

5 km (coarse grid, Madrid)
1 km (nested grid, Madrid)

Terrain following coordinates with 15 layers up to 6 km.
Surface layer at 20 m

RCG Offline 3-D Eulerian 25 km 5 layers, surface layer of 25 m, 2 layers above surface layer
and mixing height and 2 reservoir layers

SILAM Offline 3-D Lagrangian, 3-D Eulerian 0.2◦ ×0.2◦ (∼20 km) (Europe)
5 km (Northern Europe)

Multi-vertical approach with the meteorology-resolving grid
corresponding to the tropospheric part of the IFS vertical:
hybrid levels. The chemical transformations and vertical
fluxes are computed on the basis of thick staggered layers

SKIRON/Dust Online 3-D Eulerian
Polar stereoraphic
Arakawa E-grid

0.24×0.24◦ (∼24 km)
2 grids: one for the Mediterranean Region and Europe
and one extended to the North Atlantic Region

Eta step-mountain vertical coordinate system with
38 vertical levels from the surface up to 22 km

THOR Offline 3-D Eulerian (DEHM)
3-D Lagrangian (UBM)

DEHM mother domain: 150×150 km (hemispheric)
DEHM first nest: 50 km×50 km (Europe)
DEHM second nest: 16.67×16.67 km
UBM: 1 km×1 km (urban)
OSPM: 0.001 km (street pollution)

DEHM: 20 layers up to ∼15 km, lowest model layer 50 m

WRF/CHEM Online 3-D Eulerian
Lambert conformal

50 km (Europe) The vertical structure has 12 layers in sigma coordinates
with the top pressure at 100 hPa

WRF/CMAQ Offline 3-D Eulerian
Lambert Conformal
Arakawa C

12 km Terrain-following hydrostatic pressure coordinates.
22 layers extending from the surface to 100 hPa are
interpolated from the 60 WRF layers
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Table 10. A summary description of the evaluation of each CWF model. The evaluation levels
have been defined in the text.

Model name How model was evaluated Evaluation References (up to 4) Quantities evaluated
level

ALADIN-CAMx Citydelta project: Aimed to explore the changes in
urban air quality predicted by different chemistry-
transport dispersion models in response to changes
in urban emissions. Model provided good
performances for ozone (both on average and for
extreme values). Acceptable results have been
obtained for PM10 yearly means. ESCOMPTE
project: The Model has highlighted quite good
performance for both ozone and NO2

Level 2 - Hirtl et al. (2007)
- Baumann-Stanzer et al. (2005)
- Vautard et al. (2007)

O3, Ox, PM10, NO2

CAMx-AMWFG The evaluation of the model performance on the
known gas and aerosol species has been included
in several publications worldwide. The model
intercomparison has been done against in-situ
measurements for the species concentration and
against AERONET data for the dust optical depth
used for the calculation of the photolysis rates

Level 2 - Astitha et al. (2006)
- Astitha et al. (2007b)
- Astitha and Kallos (2008)
- Astitha et al. (2010)

The evaluation of the model performance
on the known gas and aerosol species like
ozone, NOx, sulfates, nitrates etc

Enviro-HIRLAM Validation against field experiments of ETEX and
MEGAPOLI, and Chernobyl measurements.
Meteorology and air quality forecasts validated
against Paris surface observation network for
specific episodes. Model intercomparison:
Participant in EU MEGAPOLI project. Needs
further verification over long-term periods

Level 2 - Chenevez et al. (2004)
- Korsholm et al. (2009)
- Korsholm (2009)
- Mahura et al. (2008)

Transport and scavenging processes have
been evaluated using ETEX and
Chernobyl observations; meteorology
(with feedbacks), surface O3, NOx, SO2,
PM using Paris monitoring and
MEGAPOLI campaign data

EURAD-RIU GEMS: Evaluation against measurements and other
air quality forecast models. Participation of
the COST 728 model intercomparison for the
winter 2003 case

Level 2 - Hass et al. (1997)
- Jakobs et al. (2002)
- Schlünzen and Fock (2008)

O3, PM10, NO2,

FARM On single model components and against
monitoring data in real applications. Long-term
model intercomparison exercise over Po Valley
(Northern Italy), carried out by Regional
Environmental Protection Agencies. Ongoing
long-term model intercomparison exercise over
Po Valley (Northern Italy), carried out by
Regional Environmental Protection Agencies

Level 2 - Silibello et al. (2008)
- Schlünzen and Fock (2008)

- Calori et al. (2008)
- Gariazzo et al. (2007)

O3, NO2, NOx, PM10

LOTOS-
EUROS

Validation with groundbased measurements.
EURODELTA: A regional scale model
intercomparison to analyse the responses of
different CTMs to emission changes/scenarios

Level 2 - Schaap et al. (2008) O3, NO2, NO, NH3, SO4, SO2 and NH4.
Secondary organic aerosols, sea salt, and
heavy metal concentrations

MATCH Eurodelta: Evaluation of seven regional air quality
models and their ensemble for Europe and Mics
Asia – Model intercomparison study for Southern
and Eastern Asia, Phase 1 and 2

Level 2 - Carmichael et al. (2002)
- Carmichael et al. (2008b)

Evaluated reference dataset: chemistry
and transport including SO2, NO2, NOx,
NH3, HNO3, O3, CO, CF6, 137Cs, seasalt,
(CF6 during the ETEX-experiment and
137Cs for the Tjernobyl accident). Model
intercomparison: including SO2, NO, NO2,
NOx, NH3, HNO3, O3, HCHO
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Table 10. Continued.

Model name How model was evaluated Evaluation References (up to 4) Quantities evaluated
level

MM5-CAMx Within the European project GEMs, the air quality
forecast has been operationally evaluated against
surface measurements in Europe (rural stations
of EMEP, urban stations of AIRBASE in Athens,
Greece) and compared with the forecasts from other
models (e.g. CHIMERE, EMEP, EURAD etc.) and
the European ensemble forecast. Tropospheric
columns of NO2 and O3 have been compared with
satellite data. There has been also upper air
evaluation with WOUDC sites measurements

Level 3 - Huijnen et al. (2010)
- Kioutsioukis et al. (2009)
- Kioutsioukis et al. (2010)
- Poupkou et al. (2008)
- Poupkou et al. (2006)

Ozone, nitrogen dioxide, sulphur dioxide,
carbon monoxide and particulate matter
(PM10)

MM5-
CHIMERE

MM5: Evaluated in many model intercomparison
studies, particularly compared to RAMS. CHIMERE:
Analysis evaluation was performed through studies
published in more than 30 perr reviewed papers. For
the forecast, the evaluation of the model is updated
daily on the PREVAIR web site with correlations
scores compared to hourly surface emasurements.
Model intercomparison: City-Delta, Euro-Delta,
Esquif, escompte. Numerous projects, described
on the CHIMERE web site

Level 2 - Hara et al. (2005)
- O’Neil et al. (2005)
- Menut et al. (2005)
- Vautard et al. (2007)

Dispersion simulations of O3, Ox, PM10

MM5/WRF-
CMAQ

The model is used for several experiments and
compared the results with the observational data.
Results show correlation coefficients between
0.5 to 0.9 for Ozone concentrations for one year
hourly concentrations (8760 data)

Level 2 - Meng et al. (2007)
- Vijayaraghavan et al. (2007)
- San Jose et al. (2007)
- Appel et al. (2009)

Analysis of the amount of air pollutant
concentrations due to the industrial plant
emissions. Evaluation of the potential
impact of an incinerator. Modeling the
transport and transformation of mercury.
Performance of the model system is
compared with the existing measurements
of a total of 22 PCB congeners and the 17
most toxic PCDD/F congeners

MOCAGE Meteorological forcings from MOCAGE are provided
by numerical weather prediction suites at Météo-
France (ARPEGE, ALADIN) and ECMWF (IFS),
with operational skill score verifications. MOCAGE
has been evaluated against observations in the
context of a range of field campaigns and
international exercises (ESQUIF, ESCOMPTE,
City-Delta, ICARTT-ITOP,...), with over 40
publications in the international refereed literature.
Evaluation range from the global scale (including
the stratosphere) to the regional/local scale for
gases and primary aerosol species. Continuous
operational skill score monitoring for regulatory
species is performed at Météo-France and INERIS
in the context of PREVAIR (Rouil et al., 2009)

Level 2 - Josse et al. (2004)
- Dufour et al. (2004)
- Bousserez et al. (2007)
- Ménégoz et al. (2009)

Transport and scavenging processes have
been evaluated using ETEX and Rn/Pb
observations; surface O3, NOx, SO2,
HNO3, PAN using routine surface
observation and campaign data;
deposition of ozone using ESCOMPTE
data; global tropospheric and
stratospheric distributions of Ozone, CO,
NO2, N2O using a range of satellite
data products; aerosol was evaluated
using surface PM observations, Lidar
and AERONET data, as well as
campaign data
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Table 10. Continued.

Model name How model was evaluated Evaluation References (up to 4) Quantities evaluated
level

NAME Validation against field experiments including ETEX,
and Kincaid. Air quality forecasts validated against
UK surface obs network. Model intercomparison:
Participant in EU ENSEMBLE project

Level 2 - Webster and Thomson (2002)
- Ryall and Maryon (1998)
- Simmonds et al. (1996)

Plume rise scheme is validated against
Kincaid data set. NAME model
predictions are compared against ETEX.
Model has been validated against
observations of a number of trace gases.
Intercomparisons amongst European
models used to simulate foot and mouth
disease spread

OPANA Evaluated at the end of EMMA project (CGXIII,
1996–98). The system has been tested again many
data during the last 10 years. Model intercompar-
ison: The model has been tested and compared
with observational data in every air quality impact
assessment (callibration phase) and in every real-
time air quality forecasting system developed for
urban and/or industrial areas since the system is
callibrated with one year air quality monitoring data
in the subjected area and surroundings

Level 2 - San José et al. (2005) O3, NO2, CO, SO2, PM10, PM2.5,
Cadmium, Arsenic, Nickel, Lead and
Benzo(a)pyrene

RCG PM10-measurements done in and aroud the Greater
Berlin Area have been used to validate RCG on
different scales. EuroDelta model intercomparison
for Europe. EUROTRAC – GLOREAM: The focus
is primarily on model performance for aerosol
components in conjunction with the EMEP
observational data that has been extended using
Dutch and German special observation sites

Level 2 - Beekmann et al. (2007)
- van Loon et al. (2004)
- Hass et al. (2003)

PM10 (EC, OC, inorganic aerosols,
metals), sulphate, nitrate, ammonium,
elemental carbon, wind-blown-dust
events

SILAM Regular emergency-type evaluations whenever
possible. Operational validation of the air quality
forecasts using present-week observations over
Finland. European-scale re-analysis for 2000–
2003. Emergency-type model intercomparisons
within EU-ENSEMBLE and follow-up projects,
NKS-MetNet network, etc. Air quality inter-
comparison projects are on-going within the scope
of COST-728, EU-GEMS, and ESA-PROMOTE

Emergency
applications:
Level 1.
Others:
Level 2–
Level 3

- Sofiev et al. (2006c)
- Galmarini et al. (2004a)
- Huijnen et al. (2010)

Air quality forecasts. Individual model
units were compared against analytical
solutions, chemical scheme tested as
a box model, etc.

SKIRON/Dust Validation and evaluation of the model SKIRON/
Dust have been performed from AM&WFG during
several projects (SKIRON, MEDUSE and ADIOS).
Also, the modeling system has been used by other
Universities and Institutes world-wide. Model
intercomparison has been performed against
measurements and observations

Level 2 - Astitha et al. (2007a)
- Kallos et al. (2009)
- Kallos et al. (2007)

Intercomparison against in-situ
measurements of dust and PM
concentration, remote measurements
of aerosol optical depth from satellites
or radars

6156

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/11/5985/2011/acpd-11-5985-2011-print.pdf
http://www.atmos-chem-phys-discuss.net/11/5985/2011/acpd-11-5985-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
11, 5985–6162, 2011

Operational, regional-
scale, chemical

weather forecasting
models in Europe

J. Kukkonen et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 10. Continued.

Model name How model was evaluated Evaluation References (up to 4) Quantities evaluated
level

THOR EuroDelta experiment: Long-term ozone
simulations from seven regional air quality models
were intercompared and compared to ozone
measurements. Validation and comparison for two
cities in Denmark with Urban Backround Model,
BUM, and Operational Street Pollution Model,
OSPM, included to THOR system

Level 2 - Brandt et al. (2001) Performance of the air pollution models
BUM and OSP for NOx, O3, NO, NO2

WRF/CHEM WRF/Chem-MADRID has beeb evaluated with
Satellite and Surface Measurements

Level 2 - Zhang et al. (2005a) The simulated concentrations of gas and
aerosol species (e.g., O3, SO2, NOx,
and PM2.5) and aerosol optical properties
(e.g., aerosol optical depth, single
scattering albedo, aerosol direct radiative)
are being compared against available
observational data
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Table 11. A summary of the availability, user communities, and documentation of the various
CWF systems.

Model name User interface availability User community Documentation status Availability

ALADIN-CAMx Mainly Linux shell scripts and
Fortran90 (gfortran) code

Researchers for regulatory applications.
Combination of ALADIN-Austria and CAMx is
only implemented at ZAMG

Level 1: CAMx (www.camx.com), physical description of
model, code administration, installation guide, evaluation.
Level 1: ALADIN (www.cnrm.meteo.fr/aladin), physical
description of the model, variable settings

Not a public domain programme. Information on the
conditions for obtaining the model can be provided by the
contact person.
CAMx is open source software: www.camx.com

CAMx-
AMWFG

Linux shell scripts, Intel Fortran
using OpenMP. NCAR graphics

The model can be used properly by a highly
skilled person

Level 1: Complete documentations available, ranging from the
scientific description down to users manuals with details on
the machine code

CAMx-AMWFG (with the new features) availability should be
discussed with the contact person. CAMx is open source code
available from www.camx.com

Enviro-
HIRLAM

Shell scripts and FORTRAN
code. METGRAF graphics

Enviro-HIRLAM is baseline system for the
international HIRLAM chemical branch. The
model can be used properly by a highly skilled
person

Model formulation, practical lectures notes and
web-description. Level 2, English. https://hirlam.org/trac/wiki

For users of the HIRLAM chemical branch. Enviro-HIRLAM
is an open community model, source code is available from
hirlam.org upon agreement

EURAD-
RIU

Linux shell scripts, Portland
Fortran compiler using OpenMP
or MPI, NCAR Graphics

The EURAD research group at RIU Model description and user manual Not a public domain model system. Availability possible within
common projects

FARM Post-processor for statistical
analysis of modelled fields
and data extraction as well
as interface with visualization
tools (AVISU, Savi3-D, GrADS,
Vis5D)

Italian national and local environmental
authorities, research institutes. Users of FARM
should have a sufficient background in
atmospheric sciences and experience in the
use of complex numerical models

Model formulation and user manual. Level 1–2, English Available to selected users

LOTOS-
EUROS

Configuration file including
description, shell scripts to
compile and start

Scientists within national and international
projects. Forecasts provided to the public

Yearly reports with description of physics and
parameterisation. Technical documentation for daily usage

Limitted to institutes participating in model consortium.
Information on the conditions for obtaining the model can
be provided by the contact person

MATCH Shell scripts and Fortran code,
requiring technical expertise.
More user-friendly frontends
with less configuration options
exist for specific applications

Scientists within national and international
projects. Environmental agencies and decision
makers (access mostly through tailored
interfaces). Forecasts provided to the public

Level 2: Rather good scientific documentation and less
complete user’s manuals. Automatically generated
html-documentation included in model installation. General
information also available on the web-page

The model is not a public domain programme. Information on
the conditions for obtaining the model can be provided by the
contact person

MM5-C
AMx

Linux shell scripts, Intel
Fortran using OpenMP, PAVE
and GRADS visualization tools

Research groups, environmental agencies,
private companies. The modelling system
can be applied by skilled users

Complete documentation (scientific description, user’s guide,
software) available at: MM5: http://www.mmm.ucar.edu/mm5;
and CAMx: http://www.camx.com

The MM5-CAMx system used for air quality forecast in
Europe, in the Balkans and in Athens is not public available.
The availability of the system can be discussed with the
contact persons. Both MM5 and CAMx are public available
models

MM5-
CHIMERE

CHIMERE:
Fortran program called
CHIM2FIG for automatic
generation of maps, vertical
cross-section, time-series using
GMT free software. The
exachim tool using Grads free
software

CHIMERE users mailing list:
chimere-users@lmd.polytechnique.fr
Website:
http://euler.lmd.polytechnique.fr/chimere
Questions: chimere@lmd.polytechnique.fr

MM5: Journal publications, workshop preprints, NCAR
technical notes and manuals are available from the NCAR
MM5 Community Model Homepage. CHIMERE: Complete
documentations available, ranging from the scientific
description down to users manuals

MM5: The model is a public domain programme. The source
code and utility programmes can be downloaded from the
NCAR MM5 Community Model Homepage:
http://www.mmm.ucar.edu/mm5/mm5v3/wherev3.html
CHIMERE: Online free access to the code under the General
Public License

MM5/WRF-
CMAQ

Shell and Tcl shell scripts. IDV
and PAVE visualization tools.
Interfaces developed to convert
output original files (NETCDF) to
Ferret format

Research groups, environmental agencies,
private companies. The modelling system can
be applied by skilled users. Operational air
quality forecasting systems for cities and
industrial plants. Used for air quality impact
studies for new power plants, incinerators and
oil companies

All documentation can be found in http://www.cmascenter.
org/. MM5 was originally developed by NCAR/PSU in US and
the development of WRF is a colloborative partnership among
the NCAR, NCEP, FSL, AFWA, the Naval Research
Laboratory, University of Oklohoma, and FAA. CMAQ was
originally developed by US EPA

MM5/WRF-CMAQ is in the public domain. Scripts developed
ad-hoc for running the systems and for specific customized
applications have to be developed on demand. Please contact
Director ESMG or CAIR, University of Hertfordshire for details

MOCAGE UNIX/Linux shells or PrepIFS/
Olive interfaces to run the
model. Output is available
in NetCDF (CF) or/and LFI
or GRIB. Tools (fortran code,
shell script in UNIX/LINUX or
PYTHON) are available for
graphical production with GMT,
FERRET and IDL

Météo-France research centre, Météo-France
operational departments (environment and
health division, forecasters in support of
accidentel crises), research labs (Laboratoire
d’Aérologie, CERFACS), PREVAIR users (local
air quality agency, ministery for environment,...),
National Met Services (AEMET Spain, DMN
Morroco, NMA Roumania, KMA Korea)

In addition to peer-reviewed international litterature, model
documentation (scientific, user) is currently composed of
several documents. Harmonization of these and further
developments are on-going. Detailed information on
demand

The code is not in the public domain, but it is available free of
charge for research purposes under a specific scientific
collaboration agreement. For operational and/or commercial
application of the code or outputs, a negociation is needed
with Météo-France (contact us)

NAME Simple text file UK Met Office
Universities,
UK government and defence organisations

Level 2/Level 3 documentation. Adequate user manual.
Significant validation of model against experimental data

The model can be made available to research and commercial
users via negotiation with the Met Office

OPANA Friendly user interface which
can be easily customised to user
specifications

City Council, Environmental Administrations or
Regional Authorities, industry, etc

Model is having an on-line help and on-line manual Conditions to have a licence of OPANA framework can be
provided by the contact person

RCG Input ascii-file must be compiled Governmental or local authorities, scientists
within national and international projects

Reports and publications. Documentation available on
demand

NO INFO
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Table 11. Continued.

Model name User interface availability User community Documentation status Availability

SILAM Available for emergency tasks
(restricted access via SILAM
Web portal)

Operational dept. of Finnish Met. Inst.
(Emergency preparedness, Operational air
quality forecasts), Finnish Radiation Protection
Authority (Emergency preparedness).
Research purposes: Finnish Met. Inst., and
other Research groups

Level 1 documentation for the operational version is available
from the Web site (http://silam.fmi.fi/)

The model is public.
Well-tested operational version v.3.6.5 is available from the
Web site. Research version of the model is available on
request

SKIRON/Dust Linux shell scripts, Intel Fortran
using MPI parallel processing.
NCAR graphics

The model can be used properly by a highly
skilled person

Level 2 Information on the availability can be provided by the contact
person

THOR Linux shells, Pathscale,
portland and Intel Fortran,
UNIRAS graphics, vis5d, IDV,
NCL

Research groups. The modelling system can be
applied by skilled users

Peer review papers and some documentations available Not a public domain model system. Availability possible within
common projects

WRF/CHEM Shell and Tcl shell scripts. IDV
and PAVE visualization tools.
Interfaces developed to
convert output original files
(NETCDF) to Ferret format

WRF/CHEM is used as a research tool by
ESMG-UPM. Recently applied for internal tests
in operational air quality forecasting systems.
Applied in several COST 728 projects

No info WRF/CHEM is in the public domain. Scripts developed
ad-hoc for running the systems and for specific customized
applications have to be developed on demand. Please
contact Director ESMG for details
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Table 12. Dissemination of CWF system predictions in the Internet. The results correspond to
characteristic properties for European regional scale CWF systems (Balk et al., 2010).

Operational CWF
modeling system
characteristic

Parameters and explanation

Forecasting
period

The time frame of the forecasting, ranging from 24 h to 3 days in
advance

Pollutants
forecasted

Two to seven pollutants were addressed, and include PM2.5, PM10,
NO, NO2, NH3, O3, SO2, CO, benzene, and radon

Information type
provided

Varies on a case-by-case basis, and includes daily mean, daily max-
ima, hourly values, hourly averages, hourly maxima, 8 h running av-
erage (for Ozone), and Air Quality Index

Information
presentation

In the majority of cases, the information is presented with the aid of
two-dimensional pseudo-color concentration contours. Some times
are available as animations or spot maps. Images are GIF formatted,
and in a few cases are available also as PNG files, or via a Java
Applet

Additional
information

Some systems also provided information on the road and railroad
network, wind speed, cloud coverage, temperature, mixing layer, an-
imated trajectories, wet deposition, and time series graphs for se-
lected locations. Animations of various days were also available for
some parameters ion some systems

Web site
technology and
user interface

In the majority of cases, this was covered with HTML and AJAX.
Although in many cases, the solution adopted was HTML and PHP,
or the applications used HTML and Java, HTML, AJAX and Java,
HTML, or PHP and AJAX
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Table 13. The CWF models that include adjoint modelling, and the classification of the method
and references.

Model Method References

CAMx Direct Decoupled Method,
Tangent Linear Model

Dunker et al. (2002),
Kioutsioukis et al. (2005)

CHIMERE Adjoint Model Vautard et al. (2000),
Menut (2003)

CMAQ Adjoint Model Hakami et al. (2007)

EURAD-RIU Adjoint model Elbern et al. (2000)

HIRLAM Adjoint Model Gustafsson and Huang (1996)

MOCAGE Adjoint Model (transport)+
Tangent Linear (chemistry)

Geer et al. (2006),
Barret et al. (2008)

SILAM Adjoint Model Sofiev et al. (2006c)
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Off-line coupling: 

 

On-line coupling/integration: 

 

Fig. 1. Schematic diagram of the off-line and on-line coupled NWP and CTM modelling ap-
proaches for CWF.
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